
Coding Freedom

••

Coding Freedom

THE ETHICS AND AESTHETICS

OF HACKING

••

E . G A B R I E L L A C O L E M A N

P R I N C E T O N U N I V E R S I T Y P R E S S

P R I N C E T O N A N D O X F O R D

Copyright © 2013 by Princeton University Press

Creative Commons Attribution- NonCommercial- NoDerivs CC BY- NC- ND

Requests for permission to modify material from this work should be sent to
Permissions, Princeton University Press

Published by Princeton University Press, 41 William Street, Princeton,
New Jersey 08540

In the United Kingdom: Princeton University Press, 6 Oxford Street,
Woodstock, Oxfordshire OX20 1TW

press.princeton.edu

All Rights Reserved

At the time of writing of this book, the references to Internet Web sites (URLs) were accurate.
Neither the author nor Princeton University Press is responsible for URLs that may have

expired or changed since the manuscript was prepared.

Library of Congress Cataloging-in-Publication Data
Coleman, E. Gabriella, 1973–
Coding freedom : the ethics and aesthetics of hacking / E. Gabriella Coleman.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-691-14460-3 (hbk. : alk. paper)—ISBN 978-0-691-14461-0 (pbk.

: alk. paper) 1. Computer hackers. 2. Computer programmers. 3. Computer
programming—Moral and ethical aspects. 4. Computer programming—Social
aspects. 5. Intellectual freedom. I. Title.

HD8039.D37C65 2012
174’.90051--dc23 2012031422

British Library Cataloging- in- Publication Data is available

This book has been composed in Sabon

Printed on acid- free paper. ∞
Printed in the United States of America

1 3 5 7 9 10 8 6 4 2

This book is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE

••

We must be free not because we claim freedom,
but because we practice it.

— William Faulkner, “On Fear: The South in Labor”

Without models, it’s hard to work; without a context,
dif" cult to evaluate; without peers, nearly

 impossible to speak.
— Joanna Russ, How to Suppress Woman’s Writing

C O N T E N T S

••

Acknowledgments ix

Introduction
A Tale of Two Worlds 1

PART I
HISTORIES

Chapter 1
The Life of a Free Software Hacker 25

Chapter 2
A Tale of Two Legal Regimes 61

PART II
CODES OF VALUE

Chapter 3
The Craft and Craftiness of Hacking

93

Chapter 4
Two Ethical Moments in Debian

123

PART III
THE POLITICS OF AVOWAL

AND DISAVOWAL
Chapter 5

Code Is Speech
161

Conclusion
 The Cultural Critique of Intellectual Property Law

185

Epilogue
How to Proliferate Distinctions, Not Destroy Them

207

v i i i C O N T E N T S

Notes 211

References 225

Index 249

A C K N O W L E D G M E N T S

••

This project marks the culmination of a multiyear, multicity endeavor
that commenced in earnest during graduate school, found its " rst stable

expression in a dissertation, and has, over a decade later, fully realized it-
self with this book. During this long period, over the various stages of this
project, many people have left their mark in so many countless ways. Their
support, interventions, comments, and presence have not only improved the
quality of this work but also simply made it possible. This book could not
have been written without all of you, and for that I am deeply grateful.

In 1996, at the time of my " rst exposure to Linux, I was unable to glean
its signi" cance. I could not comprehend why a friend was so enthused to
have received a CD in the mail equipped with Slackware, a Linux distri-
bution. To be frank, my friend’s excitement about software was not only
incomprehensible; it also was puzzling. Thankfully about a year later, this
person clued me in as to what makes this world extraordinary, doing so
initially via my interest at the time: intellectual property law. If it were
not for Patrick Crosby, who literally sat me down one day in 1997 to
describe the existence of a novel licensing agreement, the GNU General
Public License (GPL), I would have likely never embarked on the study of
free software and eventually hackers. I am thrilled he decided that some-
thing dear to him would be of interest to me. And it was. I was 2 oored to
discover working alternatives to existing intellectual property instruments.
After months of spending hour after hour online, week after week, read-
ing about the 2 urry of exciting developments reported on Linux Weekly
News, Kuro5hin, and Slashdot, it became clear to me that much more
than the law was compelling about this world, and that I should turn this
distractingly fascinating hobby into my dissertation topic or run the risk
of never " nishing graduate school. Now I not only know why Patrick was
happy to have received the Slackware CD back in 1996— and I found he
was not alone, because many people have told me about the joy of discov-
ering Slackware— but also hope I can convey this passion for technology
to others in the pages of this book.

Many moons ago in graduate school at the University of Chicago when
I proposed switching projects, my advisers supported my heretical decision,
although some warned me that I would have trouble landing a job in an

anthropology department (they were right). Members of my dissertation
committee have given invaluable insight and support. My cochairs, Jean
Comaroff and John Kelly, elongated my project in the sense that they always
asked me to think historically. Jean has also inspired me in so many ways,
then and now. She is everything a scholar should be, so I thank her for be-
ing such a great mentor. Nadia Abu El- Haj encouraged me to examine the
sociocultural mechanisms by which technoscience can act as the basis for
broader societal transformation. I was extremely fortunate to have Gary
Downey and Chris Kelty on board. In 1999, I was inspired by a talk that
Gary gave at the American Anthropological Association meetings on the
importance of positive critique, and I hope to have contributed to such a
project here.

Chris, a geek anthropologist extraordinaire, has added to this project in
innumerable ways. Because of his stellar work on free software, his com-
ments have been breathlessly on target, and more than any other person, he
has pushed this project to " rmer, more coherent ground. His insistence on
not only understanding the world but also (re)shaping it is inspiring, and I
hope that I can one day follow in his footsteps. Although Patrice Riemens
was not an of" cial adviser, he nonetheless, like any hacker would, shared
freely. His advice, especially pertaining to hacker politics, was as indispens-
able as the guidance from my of" cial committee members.

Fieldwork, of course, is where the bulk of anthropological research oc-
curs. For me, most of that took place in San Francisco, with a short stint in
the Netherlands, and throughout copious time was spent online. While there
were countless people who made my " eldwork possible, I have to single
out three who really went out on a limb for me, over and over again: Seth
Schoen, Praveen Sinha, and Zack Brown. I think each one of you knows
how much you have helped me start, proceed with, and " nish this project,
and I am grateful from the bottom of my heart.

Many others have helped me understand with much greater depth what
drives people to write free and open- source software (F/OSS). Among those
in the Bay Area, I would like to especially thank Brian Behlendorf, Rick
Moen, Karsten Self, Don Marti, Mike Higashi, and Evan Prodromou. Also,
all the folks at the Electronic Frontier Foundation and Online Policy Group
provided me with the invaluable opportunity of interning at their respec-
tive organizations. Will Doherty, in particular, deserves a special nod (even
though he worked me so hard). Quan Yin also gave me the opportunity to
volunteer at its acupuncture clinic, and perhaps more than any other experi-
ence, this one kept everything in place and perspective. My Bay Area room-
mates, Linda Graham and Nikki Ford, supplied me with an endless stream
of support.

My time in the Netherlands, in October 2002, was short but made a
lasting impression. The Hippies from Hell were welcoming and helpful.

x AC K N OW L E D G M E N T S

They also organize the best darn hacker conferences in the world, and a big
thanks to them (and all the other volunteers) for putting in so much effort
to ensure that others can have an amazing time. Niels Hatzmann was a gra-
cious host, great biking partner, and now good friend.

A bulk of my work was with Debian and its developers. I can’t thank
these developers enough. Words can’t capture how much I admire the ways
in which you have managed to not only produce an operating system (OS)
but also a stunningly vibrant online community— a word I rarely use for the
Internet, and yet one that absolutely pertains to the case of Debian. I have
thoroughly enjoyed my time with everyone as well, whether in person; on
Internet Relay Chat (IRC), where countless folks have helped me answer
questions and get through the many stages of writing and editing; and most
especially, at the various Debconfs I have attended from Edinburgh to Porto
Alegre. And after helping to organize Debconf10 in New York City, I was
able to fully experience the unmistakable pride that swells when a collec-
tive works to conjure something into being. I am deeply grateful for the
opportunity to have participated and look forward to attending many more
in future times.

Though there are many developers who have taken the time to share
their thoughts about Debian and other F/OSS projects, Benjamin “mako”
Hill, in particular, has been a close friend and collaborator. I wish him well
as he embarks on his own academic career and look forward to future col-
laborations. Martin Kraft, Clint Adams, Paul Wise, “vagrant,” Joey Hess,
Erinn Clark, and Daniel Khan Gilmore have also been great friends as well
as teachers over this journey.

I returned to the University of Chicago in fall 2003 to write my disser-
tation, only to discover that really I had no idea how to proceed. Thank-
fully there were many others to teach me the ropes. An astounding range of
people read different parts of my dissertation and gave me helpful feedback.
There are a few who went beyond the call of duty, though. Alex “rex” Gol-
ub, who taught me more about liberalism than anyone else, really pushed
me to think more systematically than I was used to at the time. Alex Choby
has always been a steadfast long- distance interlocutor and also went for the
extra mile to offer comments on my work on cleverness. James Rizzo was
a fantastic editor with equally fantastic comments. Joe Hankins, Joe Fein-
berg, Jeff Martin, Andrea Muehlebach, Jessica Greenberg, Yarimar Bonilla,
and Chris Walker also gave me copious feedback on this project. One of
the reasons I have come to respect the University of Chicago is because
of its student- run graduate workshops. I was known to make my rounds
at various workshops, and the following students gave me great feedback
throughout the last few years: Anya Bernsetin, Stephen Scott, Mike Cepek,
Andrew Dilts. Alex Mawyer, Mihir Pandya, Anwen Tormey, Jason McGraw,
Diana Bocarejo, and Tom Asher (and others who I don’t know personally

AC K N OW L E D G M E N T S x i

or may have forgotten). Many other professors in and out of the workshop
system also read a few of the chapters and offered feedback, especially Tan-
ya Luhrmann and Patchen Markell, who provided excellent advice on vari-
ous chapters. Susan Gal, Manuela Carneiro Da Cunha, Michael Silverstein,
Jessica Cattelinno, Joe Masco, and Judith Farquar at different points also
read portions and provided helpful suggestions.

The dissertation formed the bulk of what became this book, which was
written in diverse places and weather climates, from scorching summers in
San Juan, Puerto Rico, to one of the coldest North American cities, Edmon-
ton, Canada. While a postdoctoral fellow at the Center for Cultural Analysis
at Rutgers University, I received useful comments from Meredith McGill,
Michael Warner, Greg Lastowka, Paula McDowell, Ellen Goodman, Daniel
Fisher, and especially Lisa Gitelman, and was also afforded a lively context
from which to learn about intellectual property law from the angle of book
history. At the University of Alberta, Rob Wilson, Kathleen Lowery, and
my of" ce mate Jeff Kochan also read various sections and chapters of the
book. I " nished a good chunk of the book thanks to the support (and amaz-
ing peace and quiet) provided by the Institute for Advanced Study. I would
like to especially thank Didier Fassin and Tanya Erzen, whose insights have
made their way into this book.

There are a few people who also have given important feedback on por-
tions of this book, presented at conferences or other venues: Jelena Kara-
novic, Kathy Mancuso, Andrew Leonard, Nanodust, Martin Langhoff, Bill
Sterner, Margot Browning, Jonas Smedegaard, Danny O’Brien, Cory Docto-
row, Graham Jones, Thomas, Malaby, Alan Toner, Samir Chopra, Scott Dex-
ter, Jonah Bossewitch, Marc Perlman, and Patrick Davison. Quinn Norton,
whose expansive creativity and deep insight into all things geek aided me
in toning down the academese, supplied great nuggets of wisdom and insight.
Mary Murrell was kind enough to read the entire manuscript, and provide
substantive insight and feedback on my arguments and the book’s structure.
I am so fortunate that I was able to teach material related to this topic and,
especially, to such engaged students (and offer a hat tip to Parker Higgins,
Max Salzberg, and Kevin Gotkin, in particular). Everyone in my “home
away from home,” #techfed, provided me with essential support through-
out this process— humor— and many also offered their suggestions. Even if
IRC has been known to draw my attention from writing, I could not have
" nished this book without it.

Two of my closest friends are everywhere in this book. Genevieve Lakier,
the brightest woman I know, has read much of this book and pushed my
thinking forward. Karl Fogel, an open- source developer and open access
advocate, is not only featured in the pages of this book but read through
many sections and chapters as well to make sure that my language, and thus
arguments, were more precise.

x i i AC K N OW L E D G M E N T S

For my " rst academic teaching position, I had the amazing fortune of
landing at the Department of Media, Culture, and Communication at New
York University— fortunate for the collegiality, commitment to excellence,
and resources provided to junior faculty. I would like to thank my two
chairs, Ted Magder and Marita Sturken, who went to bat for me many
times, making New York University such a hospitable home from which
to work. My New York University colleague Michael Ralph was one of
the most engaging sounding boards, providing invaluable feedback espe-
cially on the question of cunning and craft among hackers. My research
assistants, James Hodges, Parker Higgins, and especially Matthew Powers,
helped enormously with making this book happen.

Various organizations provided me with generous funding, which has
been essential for carrying out this research and writing. I graciously ac-
knowledge support from the National Science Foundation Grant for a dis-
sertation research grant, the Social Science Research Council for a research
grant for the study of nonpro" ts, and the Woodrow Wilson National Fel-
lowship Foundation’s Charlotte W. Newcombe Doctoral Dissertation Fel-
lowship for the study of religious and ethical values.

Parts of this book have also been published elsewhere, and have bene" ted
tremendously from the anonymous reviewers and journal editors. The last
section in chapter 1 was published as “Hacking in Person: The Ritual Char-
acter of Conferences and the Distillation of a Lifeworld,” Anthropological
Quarterly 83 (1): 47– 72. An earlier version of chapter 5 was published as
“Code Is Speech: Legal Tinkering, Expertise, and Protest among Free and
Open- Source Software Developers,” Cultural Anthropology 24 (3): 420– 54.
Sections of the conclusion can be found in “The Political Agnosticism of
Free and Open- Source Software and the Inadvertent Politics of Contrast,”
Anthropology Quarterly 77 (3): 507– 19.

I am extraordinarily fortunate that my book landed with Princeton Uni-
versity Press and Fred Appel. Fred has been such a lively editor and adviser,
and I have so enjoyed our many chats over coffee and drinks, and look
forward to many more in the future. To the anonymous reviewers: thank
you for the kindness, generosity, and " nely tuned comments that have been
essential to completing this book.

One person has had the opportunity to see me through every last step of
brainstorming, drafting, writing, rewriting, and complaining: Micah Ander-
son. For better and worse, he has experienced the public and private face of
this project, graciously showering the pages with perceptive, lively, and espe-
cially humorous comments and edits on every last page, all the while provid-
ing steadfast support as we tromped from city to city under conditions that
were for so many years often challenging. My gratitude is beyond words.

Finally, my family and adopted family have been an important source of
strength. The Andersons were so patient and supportive as I hopped around

AC K N OW L E D G M E N T S x i i i

x iv AC K N OW L E D G M E N T S

cities all over North America, unable to see them as I spent so much time
with my mother. My father has always placed great value on education, sac-
ri" cing many years of retirement so I could get a college education. In 2004,
my sister made a signi" cant sacri" ce, moving in with my mother to take
care of her, so I could " nish my dissertation. From 2002–2010, my mother
suffered a cruel illness that robbed her of her mind and soul. During those
eight years, I traveled back and forth from wherever I was living to San
Juan in order to be by her side. It was not always easy to live in a state of
in- betweenness, in between cities, in between life and death, but I would not
have had it any other way. Even though my mother is the one person close
to me who will never be able to read any of this book, she made it possible
in so many ways; I dedicate this book to my mother, Vera.

I N T R O D U C T I O N

A Tale of Two Worlds

••

Free and open- source software (F/OSS) refers to nonproprietary but li-
censed software, much of which is produced by technologists located

around the globe who coordinate development through Internet- based proj-
ects. The developers, hackers, and system administrators who make free
software routinely include the following artifact in the software they write:

This program is distributed in the hope that it will be useful, but WITHOUT
ANY WARRANTY; without even the implied warranty of MERCHANTABIL-
ITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License for more details.

While seemingly insigni" cant, this warning is quite meaningful for it reveals
something important about the nature of free software and my subsequent
representation of it. This legal notice is no doubt serious, but it also contains
a subtle irony available to those who know about free software. For even
if developers cannot legally guarantee the so- called FITNESS of software,
they know that in many instances free software is often as useful as or in
some cases superior to proprietary software. This fact brings hackers the
same sort of pleasure, satisfaction, and pride that they derive when, and if,
they are given free reign to hack. Further, even though hackers distribute
their free software WITHOUT ANY WARRANTY, the law nevertheless en-
ables them to create the software that many deem superior to proprietary
software— software that they all “hope [. . .] will be useful.” The freedom
to labor within a framework of their own making is enabled by licenses
that cleverly reformat copyright law to prioritize access, distribution, and
circulation. Thus, hackers short- circuit the traditional uses of copyright: the
right to exclude and control.

This artifact points to the GNU General Public License (GPL), an agree-
ment that many hackers know well, for many use it (or other similar li-
censes) to transform their source code— the underlying directions of all
software— into “free software.” A quick gloss of the license, especially its
preamble, reveals a more passionate language about freedom and rights:

2 I N T RO D U C T I O N

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it if
you want it, that you can change the software or use pieces of it in new
free programs; and that you know you can do these things.1

This type of language spills far beyond licensing agreements. It is routinely
voiced in public discourse and everyday conversation. Such commitments
to freedom, access, and transparency are formalized in a Linux distribution
known as Debian, one of the most famous free software projects. These
values are re2 ected in a pair of charters— the Debian Constitution and the
Debian Social Contract— that articulate an organizational vision and for-
mulate a set of promises to the wider free software community. These char-
ters’ names alone unmistakably betray their liberal roots, even if they were
not explicitly created with the goal of “advancing” liberal ideals.

By liberalism, I do not mean what may " rst come to mind: a political
party in Europe usually associated with politicians who champion free
market solutions, or in the United States, a near synonym for the Demo-
cratic Party. Nor is it just an identity that follows from being a proud, card-
carrying member of the American Civil Liberties Union or Electronic Fron-
tier Foundation, although these certainly can be markers.

Here I take liberalism to embrace historical as well as present- day moral
and political commitments and sensibilities that should be familiar to most
readers: protecting property and civil liberties, promoting individual auton-
omy and tolerance, securing a free press, ruling through limited government
and universal law, and preserving a commitment to equal opportunity and
meritocracy. These principles, which vary over time and place, are realized
institutionally and culturally in various locations at different times. Perhaps
the most famous of these are the institutions of higher education, market
policies set by transnational institutions, and the press, but they are also at
play on the Internet and with computer hackers, such as those who develop
free software.2

The small statement that prefaces the GNU GPL thus hints at two ele-
ments of this community: one is esoteric, and grounded in technology and
its material practices; and the other concerns a broader, culturally familiar
vision of freedom, free speech rights, and liberalism that harks back to con-
stitutional ideals. We should not take either for granted but instead open
them up to critical re2 ection, and one route to do so is by bringing them
together. This ethnography takes seriously free software’s visions of liberty
and freedom as well as the mundane artifacts that hackers take pleasure
and joy in creating. In considering them together, important lessons are re-
vealed about the incomplete, sometimes fraught, but nonetheless noticeable

A TA L E O F T WO WO R L D S 3

relationship between hacking and liberalism, and the transformations and
tensions evident within the liberal tradition and computer hacking.

A LI B E R A L CR I T I Q U E W I T H I N L I B E R A L I S M

The terms free and open as applied to software are distinct yet often come
paired. This is in part because they designate the same alternative licenses and
collaborative methodologies, but they differ in their moral orientation: the
term free software foremost emphasizes the right to learn and access knowl-
edge, while open source tends to 2 ag practical bene" ts.3 Many participants,
whether they are volunteers or corporate employees paid to work on free
software, refer to themselves with pride as hackers— computer a" cionados
driven by an inquisitive passion for tinkering and learning technical systems,
and frequently committed to an ethical version of information freedom.

Although hackers hold multiple motivations for producing their software,
collectively they are committed to productive freedom. This term designates
the institutions, legal devices, and moral codes that hackers have built in
order to autonomously improve on their peers’ work, re" ne their technical
skills, and extend craftlike engineering traditions. This ethnography is cen-
trally concerned with how hackers have built a dense ethical and technical
practice that sustains their productive freedom, and in so doing, how they
extend as well as reformulate key liberal ideals such as access, free speech,
transparency, equal opportunity, publicity, and meritocracy.

I argue that F/OSS draws from and also rearticulates elements of the
liberal tradition. Rather than designating only a set of explicitly held po-
litical, economic, or legal views, I treat liberalism in its cultural registers.4
Free software hackers culturally concretize a number of liberal themes and
sensibilities— for example, through their competitive mutual aid, avid free
speech principles, and implementation of meritocracy along with their fre-
quent challenge to intellectual property provisions. Indeed, the ethical phi-
losophy of F/OSS focuses on the importance of knowledge, self- cultivation,
and self- expression as the vital locus of freedom. Hackers bring these values
into being through an astounding range of social and technical practices,
covered in detail throughout this book.

Because hackers challenge one strain of liberal jurisprudence, intellectual
property, by drawing on and reformulating ideals from another one, free
speech, the arena of F/OSS makes palpable the tensions between two of the
most cherished liberal precepts— both of which have undergone a signi" cant
deepening and widening in recent decades. Thus, in its political dimension,
and even if this point is left unstated by most developers and advocates,
F/OSS represents a liberal critique from within liberalism. Hackers sit simul-
taneously at the center and margins of the liberal tradition.

4 I N T RO D U C T I O N

The expansion of intellectual property law, as noted by some authors,
is part and parcel of a broader neoliberal trend to privatize what was once
public or under the state’s aegis, such as health provision, water delivery,
and military services. “Neoliberalism is in the " rst instance,” writes David
Harvey (2005, 2), “a theory of political economic practices that proposes
human well- being can be best advanced by liberating entrepreneurial free-
doms and skills within an institutional framework characterized by strong
property rights, free markets, and free trade.” As such, free software hackers
not only reveal a long- standing tension within liberal legal rights but also of-
fer a targeted critique of the neoliberal drive to make property out of almost
anything, including software.

While most of this ethnography illustrates how free software hacking
critiques neoliberal trends and reinvents liberal ideals by asserting a strong
conception of productive freedom in the face of intellectual property restric-
tions, it also addresses the material, affective, and aesthetic dimensions of
hacking. In pushing their personal capacities and technologies to new hori-
zons (and encountering many frustrations along the way), hackers experi-
ence the joy that follows from the self- directed realization of skills, goals, and
talents. At times, hacking provides experiences so completely overpowering,
they hold the capacity to shred self- awareness, thus cutting into a particular
conception of the liberal self— autonomous, authentic, and rational— that
these hackers otherwise routinely advance. Thus, at least part of the reason
that hacker ethics takes its liberal form is connected to the aesthetic ex-
periences of hacking, which are informed by (but not reducible to) liberal
idioms and grammars. Hacking, even if tethered to liberal ideologies, spills
beyond and exceeds liberal tenets or liberal notions of personhood, most
often melding with a more romantic sensibility concerned with a heightened
form of individual expression, or in the words of political theorist Nancy
Rosenblum (1987, 41), a “perfect freedom.”

FI E L D W O R K A M O N G HA C K E R S

For most of its history, anthropology stuck close to the study of non-
Western and small- scale societies. This started to shift following a wave of
internal and external critiques that " rst appeared in the 1960s, expanded in
the 1970s, and peaked in the 1980s. Now referred to as “the critical turn in
anthropology,” the bulk of the critique was leveled against the discipline’s
signature concept: culture. Critics claimed that the notion of culture— as
historically and commonly deployed— worked to portray groups as far
more bounded, coherent, and timeless than they actually are, and worse,
this impoverished rendition led to the omission of topics concerning power,
class, colonialism, and capitalism (Abu- Lughod 1991; Asad 1973; Clifford
1988; Clifford and Marcus 1986; Dirks 1992; Said 1978). Among other

A TA L E O F T WO WO R L D S 5

effects, the critique cracked open new theoretical and topical vistas for an-
thropological inquiry. An anthropologist like myself, for example, could le-
gitimately enter nontraditional “" eld sites” and address a new set of issues,
which included those of technoscienti" c practice, information technologies,
and other far- 2 ung global processes stretching from labor migration to
transnational intellectual property regulations.

Partly due to these disciplinary changes, in winter 2000, I left a snowy
Chicago and arrived in a foggy San Francisco to commence what cultural
anthropologists regard as our foundational methodological enterprise: " eld-
work. Based on the imperative of total immersion, its driving logic is that we
can gain analytic insight by inserting ourselves in the social milieu of those
we seek to understand. Fieldwork mandates long- term research, usually a
year or more, and includes a host of activities such as participating, watch-
ing, listening, recording, data collecting, interviewing, learning different lan-
guages, and asking many questions.

When I told peers of my plan to conduct " eldwork among hackers, many
people, anthropologists and others, questioned it. How does one conduct
" eldwork among hackers, given that they just hang out by themselves or on
the Internet? Or among those who do not understand the name, given that
they are all “outlaws”? Often playfully mocking me, many of my peers not
only questioned how I would gather data but also routinely suggested that
my " eldwork would be “so easy” (or “much easier than theirs”) because I
was studying hackers in San Francisco and on the Internet.

The subtext of this light taunting was easy enough to decipher: despite
the transformations in anthropology that partially sanctioned my research
as legitimate, my object of study nonetheless still struck them as patently
atypical. My classmates made use of a socially acceptable medium—
joking— to raise what could not be otherwise discussed openly: that my
subjects of study, primarily North American and European (and some Latin
American) hackers, were perhaps too close to my own cultural world for
critical analysis, or perhaps that the very activity of computing (usually seen
as an instrumental and solitary activity of pure rationality) could be subject
only to thin, anemic cultural meanings.5

By the turn of the twenty- " rst century, although anthropology had cer-
tainly “reinvented” itself as a " eld of study— so that it is not only accept-
able but one is in fact, at some level, also actively encouraged to study the
West using new categories of analysis— Michel- Rolph Trouillot (2003, 13)
has proposed that “anthropologists reenter the West cautiously, through the
back door, after paying their dues elsewhere.” As a young, aspiring anthro-
pologist who was simply too keen on studying free software during gradu-
ate school and thus shirked her traditional dues, I knew that for myself as
well as my peers, my project served as an object lesson in what constitutes
an appropriate anthropological “location” (Gupta and Ferguson 1997) for
study— in particular for graduate students and young scholars.

6 I N T RO D U C T I O N

I myself wondered how I would ever recognize, much less analyze, forms
of cultural value among a group of mostly men of relatively diverse class
and national backgrounds who voluntarily band together online in order to
create software. Would I have to stretch my ethnographic imagination too
far? Or rely on a purely formal and semiotic analysis of texts and objects— a
methodology I wanted for various reasons to avoid? Amid these fears, I took
some comfort in the idea that, as my peers had indicated, my initial " eld-
work would be free of much of the awkwardness that follows from thrust-
ing oneself into the everyday lives of those who you seek to study, typically
in an unfamiliar context. At the very least, I could communicate to hackers
in English, live in a familiar and cosmopolitan urban setting, and at the end
of the day, return to the privacy and comfort of my own apartment.

As it turned out, my early ethnographic experiences proved a challenge
in many unexpected ways. The " rst point of contact, or put more poetically
by Clifford Geertz (1977, 413), “the gust of wind stage” of research, was
harder than I had imagined. Although not always discussed in such frank
terms among anthropologists, showing up at a public gathering, some-
times unannounced, and declaring your intent to stay for months, or pos-
sibly years, is an extraordinarily dif" cult introduction to pull off to a group
of people you seek to formally study. More dif" cult is describing to these
strangers, whose typical understanding of anthropology stems from popular
media representations like the Indiana Jones trilogy, our methodology of
participant observation, which is undertheorized even among anthropolo-
gists.6 Along with the awkwardness I experienced during the " rst few weeks
of " eldwork, I was usually one of the only females present during hacker
gatherings, and as a result felt even more out of place. And while I may have
recognized individual words when hackers talked shop with each other—
which accounted for a large percentage of their time— they might as well
have been speaking another language.

At the start of my research period, then, I rarely wanted to leave my
apartment to attend F/OSS hacker social events, user group meetings, or
conferences, or participate on email lists or Internet relay chat channels— all
of which were important sites for my research. But within a few months, my
timidity and ambivalence started to melt away. The reason for this dramatic
change of heart was a surprise to me: it was the abundance of humor and
laughter among hackers. As I learned more about their technical world and
was able to glean their esoteric jokes, I quickly found myself enjoying the
endless stream of jokes they made in all sorts of contexts. During a din-
ner in San Francisco’s Mission district, at the of" ce while interning at the
Electronic Frontier Foundation, or at the monthly gatherings of the Bay
Area Linux User Group held in a large Chinatown restaurant, humor was a
constant bedfellow.

Given the deep, bodily pleasures of laughter, the jovial atmosphere over-
came most social barriers and sources of social discomfort, and allowed me

A TA L E O F T WO WO R L D S 7

to feel welcome among the hackers. It soon became clear to me, however,
that this was not done for my bene" t; humor saturates the social world
of hacking. Hackers, I noticed, had an exhaustive ability to “misuse” most
anything and turn it into grist for the humor mill. Once I began to master
the esoteric and technical language of pointers, compilers, RFCs, i386, X86,
AMD64, core dumps, shells, bash, man pages, PGP, GPG, gnupg, OpenPGP,
pipes, world writeable, PCMCIA, chmod, syntactically signi" cant white
space, and so on (and really on and on), a rich terrain of jokes became sen-
sible to me.

My enjoyment of hacker humor thus provided a recursive sense of com-
fort to a novice ethnographer. Along with personally enjoying their joshing
around, my comprehension of their jokes indicated a change in my outsider
status, which also meant I was learning how to read joking in terms of plea-
sure, creativity, and modes of being. Humor is not only the most crystalline
expression of the pleasures of hacking (as I will explore later). It is also a
crucial vehicle for expressing hackers’ peculiar de" nitions of creativity and
individuality, rendering partially visible the technocultural mode of life that
is computer hacking. As with clever technical code, to joke in public al-
lows hackers to conjure their most creative selves— a performative act that
receives public (and indisputable) af" rmation in the moment of laughter.
This expression of wit solidi" es the meaning of archetypal hacker selves:
self- determined and rational individuals who use their well- developed facul-
ties of discrimination and perception to understand the “formal” world—
technical or not— around them with such perspicuity that they can intervene
virtuously within this logical system either for the sake of play, pedagogy,
or technological innovation. In short, they have playfully de" ant attitudes,
which they apply to almost any system in order to repurpose it.

A few months into my research, I believed that the primary anthropologi-
cal contribution of this project would reside in discussing the cultural mores
of computer hacking, such as humor, conjoined with a methodological anal-
ysis of conducting research in the virtual space of bits and bytes. Later in my
" eldwork, I came to see the signi" cance of another issue: the close relation-
ship between the ethics of free software and the normative, much broader
regime of liberalism. Before expanding on this connection, I will " rst take a
short ethnographic detour to specify when it became unmistakably appar-
ent that this technical domain was a site where liberal ideals, notably free
speech, were not only endowed with concrete meaning but also made the
fault lines and cracks within liberalism palpably visible.

••

It was August 29, 2001, and a typical San Francisco day. The abundant
morning sun and deep blue skies deceptively concealed the reality of much
cooler temperatures. I was attending a protest along with a group of

8 I N T RO D U C T I O N

about " fty programmers, system administrators, and free software enthu-
siasts who were demanding the release of a Russian programmer, Dmitry
Sklyarov, arrested weeks earlier in Las Vegas by the Federal Bureau of
Investigation (FBI) as he left Defcon, the largest hacker conference in the
world. Arrested at the behest of the Silicon Valley software giant Adobe,
Sklyarov was charged with violating the recently rati" ed and controver-
sial Digital Millennium Copyright Act (DMCA). He had written a piece
of software, the Advanced eBook Processor software, for his Russian em-
ployer. The application transforms the Adobe eBook format into the Por-
table Document Format (PDF). In order for the software to perform this
conversion, it breaks and therefore circumvents the eBook’s copy control
measures. As such, the software violated the DMCA’s anticircumvention
clause, which states that “no person shall circumvent a technological pro-
tection measure that effectively controls access to a work protected under
this measure.”7

We had marched from the annual LinuxWorld conference being held in
San Francisco’s premier conference center, the Moscone Center, to the fed-
eral prosecutor’s of" ce. Along the way, a few homeless men offered sol-
idarity by raising their " sts. Two of them asked if we were marching to
“Free Mumia”— an assumption probably in2 uenced by the recent string of
protests held in Mumia Abu- Jamal’s honor. Indeed, as I learned soon after
my " rst arrival in San Francisco, the city is one of the most active training
grounds in the United States for radical activists. This particular spring and
summer was especially abuzz with activity, given the prominence of coun-
terglobalization mobilizations. But this small and intimate demonstration
was not typical among the blizzard of typically left- of- center protests, for
none of the participants had a way of conveying quickly nor coherently
the nature of the arrest, given how it was swimming in an alphabet soup
of acronyms, such as DRM, DMCA, and PDF, as opposed to more familiar
ideas like justice and racism. A few members of our entourage nonetheless
heartily thanked our unlikely though clearly sympathetic supporters, and
assured them that while not as grave as Mumia’s case, Dmitry’s situation
still represented an unfair targeting by a corrupt criminal justice system,
especially since he was facing up to twenty- " ve years in jail “simply for
writing software.”

Once at the Hall of Justice, an impassioned crew of programmers hud-
dled together and held up signs, such as “Do the Right Thing,” “Coding Is
Not a Crime,” and “Code Is Speech.”

There must have been something about directly witnessing such " ery out-
pourings among people who tend to shy away from overt forms of political
action that led me to evaluate anew the deceptively simple claim: code is
speech. It dawned on me that day that while I had certainly heard this as-
sertion before (and in fact, I was only hearing it increasingly over time), it
was more signi" cant than I had earlier " gured. And after some research,

A TA L E O F T WO WO R L D S 9

it was clear that while the link between free speech and source code was
fast becoming entrenched as the new technical common sense among many
hackers, its history was remarkably recent. Virtually nonexistent in pub-
lished discourse before the early 1990s, this depiction now circulates widely
and is routinely used to make claims against the indiscriminate application
of intellectual property law to software production.

Early in my research, I was well aware that the production of free soft-
ware was slowly but consistently dismantling the ideological scaffolding
supporting the expansion of copyright and patent law into new realms of
production, especially in the US and transnational context. Once I consid-
ered how hackers question one central pillar of liberal jurisprudence, intel-
lectual property, by reformulating ideals from another one, free speech, it
was evident that hackers also unmistakably revealed the fault line between
two cherished sets of liberal principles.

While the two- hundred- year history of intellectual property has long been
freighted with controversies over the scope, time limits, and purpose of vari-
ous of its instruments (Hesse 2002; Johns 2006, 2010; McGill 2002), legal
scholars have only recently given serious attention to the uneasy coexistence
between free speech and intellectual property principles (McLeod 2007; Ne-
tanel 2008; Nimmer 1970; Tushnet 2004). Copyright law, in granting cre-
ators signi" cant control over the reproduction and circulation of their work,
limits the deployment of copyrighted material in other expressive activity,
and consequently censors the public use of certain forms of expressive con-
tent. Legal scholar Ray Patterson (1968, 224) states this dynamic eloquently
in terms of a clash over the fundamental values of a democratic society:
“A society which has freedom of expression as a basic principle of liberty
restricts that freedom to the extent that it vests ideas with legally protected
property interests.”

Because a commitment to free speech and intellectual property is
housed under the same roof— the US Constitution— the potential for con-
2 ict has long existed. For most of their legal existence, however, con2 ict was

Figure Intro.1. Protesting the DMCA, San Francisco
Photo: Ed Hintz.

1 0 I N T RO D U C T I O N

noticeably absent, largely because the scope of both free speech and intel-
lectual property law were more contained than they are today. It was only
during the course of the twentieth- century that the First Amendment and
intellectual property took on the unprecedented symbolic and legal mean-
ings they now command in the United States as well as many other nations.
(Although the United States has the broadest free speech protections in the
world, many other Western nations, even if they limit the scope of speech,
have also expanded free speech and intellectual property protections in the
last " fty years.)

For example, copyright, which grants authors signi" cant control over
their expression of ideas, was initially limited to fourteen years with one
opportunity for renewal. Today, the copyright term in the United States has
ballooned to the length of the author’s life plus seventy years, while works
for hire get ninety- " ve years, regardless of the life of the author. The original
registration requirement has also been eliminated. Most any expression— a
scribble on a piece of paper, a blog post, or a song— automatically quali" es
for protection, so long as it represents the author’s creation.

Free speech jurisprudence follows a similar trajectory. Even though
the Constitution famously states that “Congress shall make no law [. . .]
abridging the freedom of speech, or of the press,” during the " rst half of the
twentieth century the US Supreme Court curtailed many forms of speech,
such as political pamphleteering, that are now taken to represent the heart
and soul of the democratic process. It is thus easy to forget that the current
shape of free speech protections is a fairly recent social development, largely
contained within the last " fty years (Bollinger and Stone 2002).

Due to the growing friction between free speech and intellectual property,
US courts in the last twenty- " ve years have openly broached the issue by
asserting that any negative consequences of censoring speech are far out-
weighed by the public bene" t of copyright law. In other words, as a mat-
ter of public policy, copyright law represents an acceptable restriction on
speech because it is the basis for what is designated as “the marketplace of
ideas.”8 The theory animating the marketplace of ideas is that if and when
ideas are allowed to publicly compete with each other, the truth— or in its
less positivist form, the best policy— will become evident.

Given this historical trajectory, the use of F/OSS licenses challenges the
current, intellectual property regime, growing ever more restrictive, and thus
dubbed ominously by one legal scholar as the contemporary motor for “the
second enclosure movement” (Boyle 2003). Many free software developers
do not consider intellectual property instruments as the pivotal stimulus for
a marketplace of ideas and knowledge. Instead, they see them as a form of
restriction so fundamental (or poorly executed) that they need to be coun-
teracted through alternative legal agreements that treat knowledge, inven-
tions, and other creative expressions not as property but rather as speech to
be freely shared, circulated, and modi" ed.

A TA L E O F T WO WO R L D S 1 1

TH E AE S T H E T I C S O F HA C K I N G

If free software hackers render the tensions between two liberal principles
visible, and offer a targeted, if not wholesale, critique of neoliberalism in
challenging intellectual property law (but rarely using the language of neo-
liberalism), their commitment to free speech also puts forth a version of the
liberal person who strays from the dominant ideas of liberal personhood: a
self- interested consumer and rational economic seeker. Among academics,
this has often been placed under the rubric of “possessive individualism,”
de" ned as “those deeply internalized habits of thinking and feeling [. . .]
viewing everything around them primarily as actual or potential commercial
property” (Graeber 2007, 3; see also Macpherson 1962). Among hackers,
selfhood has a distinct register: an autonomous being guided by and com-
mitted to rational thought, critical re2 ection, skills, and capacity— a set of
commitments presupposed in the free speech doctrine (Peters 2005).9

However important these expressive and rational impulses are among
programmers, they don’t fully capture the affective stances of hackers, most
notably their deep engagement, sometimes born of frustration, and at other
times born of pleasure, and sometimes, these two converge. Soon after com-
mencing " eldwork, what I quickly learned is that hacking is characterized
by a con2 uence of constant occupational disappointments and personal/
collective joys. As many writers have noted, and as I routinely observed,
hacking, whether in the form of programming, debugging (squashing er-
rors), or running and maintaining systems (such as servers), is consistently
frustrating (Rosenberg 2007; Ullman 2003). Computers/software are con-
stantly malfunctioning, interoperability is frequently a nightmare to realize,
users are often “clueless” about the systems they use (and therefore break
them or require constant help), the rate and pace of technological change
is relentless, and meeting customer expectations is nearly impossible to pull
off predictably. The frustration that generally accompanies the realities of
even mundane technical work is depicted as swimming with sharks in xkcd,
one of the most beloved geeks’ comic strips (" gure Intro.2).

What this comic strip captures is how hackers, as they work, sometimes
swim in seas of frustration. To tinker, solve problems, and produce soft-
ware, especially over one’s lifetime, will invariably be marked by varying
degrees of dif" culties and missteps— a state of laboring that one theorist of
craftspersonship describes as material “resistance” (Sennett 2008). In en-
countering obstacles, adept craftspeople, such as hackers, must also build
an abundant “tolerance for frustration” (ibid., 226), a mode of coping that
at various points will break down, leading, at best, to feelings of frustration,
and at worst, to anguish and even despair and burnout.

Despite these frustrations and perhaps because of them, the craft of hack-
ing demands a deep engagement from hackers, or a state of being most
commonly referred to in the literature as “2 ow” (Csikszentmihalyi 1990).

1 2 I N T RO D U C T I O N

In its more mild and commonplace form, hacker pleasure could be said to
approximate the Aristotelian theory of eudaemonia, de" ned succinctly by
philosopher Martha Nussbaum (2004, 61) as “the unimpeded performance
of the activities that constitute happiness.” In pushing their personal capaci-
ties and skills though playing around with and making technologies, hack-
ers experience the joy that follows from the self- directed realization of skills,
goals, and talents. Indeed, overcoming resistance and solving problems, some

Figure Intro.2. “Success,” xkcd
Credit: Randall Munroe.

A TA L E O F T WO WO R L D S 1 3

of them quite baf2 ing, is central to the sense of accomplishment and pride
that hackers routinely experience.

Hacker pleasure, however, is not always so staid and controlled; it far
exceeds the pride of eudaemonia. Less frequently, but still occurring often,
hackers experience a more obsessive and blissful state. Hacker descriptions
of immersing themselves in technology remind me of Rainer Maria Rilke’s
terse and beautiful depiction of the passion that drives his intellectual pur-
suits: “All the soarings of my mind begin in my blood.” This form of plea-
sure approximates what Roland Barthes (1975) has portrayed as bliss or
jouissance— a pleasure so complete, engrossing, and enveloping that it has
the capacity to obliterate every last shred of self- awareness. In native hack
jargon, the state of bliss is the “Deep Hack Mode.” Matt Welsh, a well-
known hacker and computer scientist, humorously describes the utter mag-
netism of this mode, “very few phenomena can pull someone out of Deep
Hack Mode, with two noted exceptions: being struck by lightning, or worse,
your *computer* being struck by lightning.”10

Because hackers often submit their will and being to technology— and
are famous for denying their bodies sleep, at least for short periods— the
joy that hackers derive from attending to and carefully sculpting tech-
nologies are at times experienced as transcendent bliss. In these moments,
utility is exceeded. The self can at once express its most inner being and
collapse within the objects of its creation. In the aftermath of a particu-
larly pleasurable moment of hacking, there is no autonomous liberal self
to be found.

To be sure, these forms of pleasure and engagement were impossible for
me, the ethnographer, to touch and feel. But I routinely witnessed the so-
cial markers of the joy of hacking, as hackers talked shop with each other,
as they joked about technical minutiae, and especially during their festive
hacker celebrations. The key point is that the multifaceted pleasures of hack-
ing signal that utility is not the only driving force in hackers’ creative acts.
Although hackers are " ercely pragmatic and utilitarian— technology after
all must work, and work exceptionally well— they are also " ercely poetic
and repeatedly af" rm the artistic elements of their work. One of the clearest
expressions of technology/software as art is when source code is written as
poetry, or alternatively when poetry is written in source code (Black 2002).
For many free software hackers, the act of writing software and learning
from others far exceeds the simple enactment of an engineering ethic, or a
technocratic calculus for the sake of becoming a more pro" cient as well as
ef" cient programmer or system administrator.

This is hacking in its more romantic incarnation— a set of characteriza-
tions and impulses that hold an af" nity with liberalism, and yet also stray
into different, largely aesthetic and emotional territory. Liberalism, as a
body of thought, certainly allows for pleasure, but for the most part does
not theorize the subjective and aesthetic states of pleasure, which the Ro-
mantic tradition has centralized and made its own. Romanticism, explains

1 4 I N T RO D U C T I O N

Rosenblum (1987, 10), is a “lavish departure from sober individualism,” but
also “amounts to an exploitation of liberal ideals.” Although it is important
to differentiate liberal from romantic sensibilities, they nonetheless can co-
exist without much friction, as Rosenblum contends in her account on Ro-
manticism. She draws on various prominent historical " gures, such as John
Stuart Mill and Henry David Thoreau, to examine the compatibilities and
symbiosis between liberalism and Romanticism. Hackers, borrowing from
free speech commitments and also committed to aesthetic experiences, are a
social group whose sensibilities lie at the interface between a more rational
liberal calculus and a more aesthetic, inward- looking one.

Hackers are not alone in embracing this aesthetic, expressive sensibility,
which philosopher Charles Taylor (1992) argues persuasively is a funda-
mental part of our contemporary imaginary, or what he calls the “expres-
sive self.” First visibly emerging in the eighteenth century, this sentiment
formed the basis for “a new fuller individualism,” and places tremendous
weight on originality, sentiments, creativity, and at times, even disengage-
ment. What must be noted is that expressive individualism and the moral
commitments it most closely entails— self- ful" llment, self- discovery, and
self- improvement— can be secured, as many critics have shown, through
consumption, self- help, human enhancement technologies, and body modi" -
cation (Bellah et al. 1985; Elliott 2003; Hogle 2005), and thus can converge
seamlessly with elements of possessive individualism. Today to liberate and
express the “authentic,” “expressive” self is usually synonymous with a life-
long engagement with consumption, " ne tuned by a vast advertising ap-
paratus that helps sustain the desire for a seemingly limitless number of
consumer goods and, increasingly, human enhancement technologies such
as plastic surgery.

The example set by free software (and a host of similar craftlike prac-
tices), however, should make us at least skeptical of the extent to which
an ethic of consumption has colonized expressive individualism. Free soft-
ware hackers undoubtedly af" rm an expressive self rooted not in con-
sumption but rather in production in a double sense: they produce soft-
ware, and through this technical production, they also sustain informal
social relations and even have built institutions. Given the different ethical
implications entailed in these visions of ful" llment, expression, and self-
development (consumerist versus productive self), it behooves us to ana-
lytically pry them apart.

While the liberal articulations made by free software hackers, notably
those of free speech, carry a familiar political imprint, their material experi-
ences, the frustrations and pleasures of hacking, (including the particulari-
ties of making, breaking, and improving software) might seem politically
irrelevant. Yet the passionate commitment to hacking and especially the eth-
ics of access enshrined in free software licensing, express as well as celebrate
unalienated, autonomous labor, which also broadcasts a powerful political

A TA L E O F T WO WO R L D S 1 5

message. A number of theorists (Galloway 2004; Söderberg 2007; Wark
2004) have previously highlighted this phenomenon. Hackers insistence on
never losing access to the fruits of their labor— and indeed actively seeking
to share these fruits with others— calls into being Karl Marx’s famous cri-
tique of estranged labor: “The external character of labour for the worker
appears in the fact that it is not his own, but someone else’s, that it does
not belong to him, that in it he belongs, not to himself, but to another”
(Marx and Engels 1978, 74). It evokes Marx’s vision precisely because free
software developers seek to avoid the forms of estrangement that have long
been nearly synonymous with capitalist production. Freedom is thus not
only based on the right to speak free of barriers but also conceived as (al-
though primarily through practice) “the utopian promise of unalienated la-
bor, of human 2 ourishing through creative and self- actualizing production,”
as Barton Beebe (2010, 885) aptly describes it.

F/OSS hacker morality is therefore syncretic— a quality that is also pa-
tently evident in its politics. It enunciates a liberal politics of free speech and
liberty that speaks to an audience beyond hackers as well as a nonliberal
politics of cultural pleasure and political detachment, which is internally and
intensely focused on the practice of hacking only and entirely for its own
sake, although certainly inspiring others to follow in their footsteps. When
assessing the liberal ethics and affective pleasure of hacking, we should not
treat pleasure as the authentic face of hacking, and the other (liberalism) as
an ideological veneer simply in need of debunking (or in need of celebrat-
ing). From an ethnographic vantage point, it is important to recognize many
hackers are citizens of liberal democracies, and have drawn on the types of
accessible liberal tropes— notably free speech— as a means to conceptualize
their technical practice and secure novel political claims. And in the process,
they have built institutions and sustain norms through which they inter-
nalize these liberal ideals as meaningful, all the while clearly upholding a
marked commitment to unalienated labor.

ON RE P R E S E N T I N G HA C K E R ET H I C S

If I was comforted by the fact that hacking could be analyzed in light of cul-
tural issues like humor, liberalism, and pleasure, and that I had some meth-
odological tools at my disposal to do so, as I learned more about hacking,
my ease vanished as I confronted a new set of concerns. I increasingly grew
wary of how I would convey to others the dynamic vitality and diversity
that marks hackers and hacking, but also the points of contention among
them. To further illustrate this point, allow me to share a brief story.

Soon after ending my of" cial " eldwork, I was having dinner in Chicago
with three local free software developers. One of them asked me about some
of my memorable " eldwork experiences. There were many stories I could

1 6 I N T RO D U C T I O N

have chosen, but I started to tell the story of a speech by Kevin Mitnick— a
more transgressive hacker (for he had engaged in illegal behavior) than most
free software developers and one of the most infamous of all time— that I
heard during summer 2004 at Hackers on Planet Earth (HOPE)— a confer-
ence founded in 1994 to publicize his legal ordeals. Mitnick is known to
have once been a master “social engineer,” or one who distills the aesthet-
ics of illicit acts into the human art of the short cons. Instead of piercing
through a technological barricade, social engineers target humans, duping
them in their insatiable search for secret information. Because of various
legendary (and at times, illegal) computer break- ins, often facilitated by his
social engineering skills, Mitnick spent a good number of his adult years
either running from the law or behind bars, although he never pro" ted from
his hacks, nor destroyed any property (Coleman and Golub 2008; Mitnick
2011; Thomas 2003).

In July 2004, free at last and allowed to use computers again, Mitnick
attended HOPE in New York City for the " rst time. He delivered his hu-
morous and enticing keynote address to an over2 owing crowd of hackers,
who listened, enraptured, to the man who had commanded their political
attention for over a decade as part of a “Free Kevin Campaign.” He offered
tale after tale about his clever pranks of hacking from childhood on: “I
think I was born as a hacker because at ten I was fascinated with magic,” he
explained. “I wanted a bite of the forbidden fruit.” Even as a kid, his victims
were a diverse lot: his homeroom teacher, the phone company, and even the
Los Angeles Rapid Transit District. After he bought the same device used by
bus drivers for punching transfers, he adopted the persona of Robin Hood,
spending hours riding the entire bus network, punching his own pirated
transfers to give to customers. He found transfer stubs while dumpster div-
ing, another time- honored hacker practice for " nding information that was
especially popular before the advent of paper shredding. Despite the way
that lawyers and journalists had used Mitnick’s case to give hackers a bad
name, Mitnick clearly still used the term with pride.

When I " nished my story describing what I personally thought was a
pretty engrossing speech, one hacker, who obviously disapproved of my
reference to Mitnick as a “hacker,” replied, “Kevin is not a hacker. He is
a cracker.” In the mid- 1980s, some hackers created the term cracker to de-
2 ect the negative images of them that began appearing in the media at that
time. According to The Hacker Jargon File, crackers are those who hack
for devious, malicious, or illegal ends, while hackers are simply technology
enthusiasts. Although some hackers make the distinction between crackers
and hackers, others also question the division. To take one example, during
an interview, one free software hacker described this labeling as “a white-
washing of what kind of people are involved in hacking. [. . .] Very often
the same techniques that are used in hacking 2 [the more illegal kind] are an
important part of hacking 1.”

A TA L E O F T WO WO R L D S 1 7

To be sure, hackers can be grasped by their similarities. They tend to value
a set of liberal principles: freedom, privacy, and access. Hackers also tend
to adore computers— the glue that binds them together— and are trained
in specialized and esoteric technical arts, primarily programming, system,
or Net administration, security research, and hardware hacking. Some gain
unauthorized access to technologies, though the degree of illegality varies
greatly (and much of hacking is legal). Foremost, hacking, in its different
forms and dimensions, embodies an aesthetic where craft and craftiness
tightly converge. Hackers thus tend to value playfulness, pranking, and clev-
erness, and will frequently perform their wit through source code, humor, or
both: humorous code.

Hackers, however, evince considerable diversity and are notoriously
sectarian, constantly debating the meaning of the words hack, hacker, and
hacking. Yet almost all academic and journalistic work on hackers com-
monly whitewashes these differences, and de" nes all hackers as sharing a
singular “hacker ethic.” Offering the " rst de" nition in Hackers: Heroes of
the Computer Revolution, journalist Steven Levy (1984, 39) discovered
among a couple of generations of MIT hackers a unique as well as “daring
symbiosis between man and machine,” where hackers placed the desire to
tinker, learn, and create technical beauty above all other goals. The hacker
ethic is shorthand for a list of tenets, and it includes a mix of aesthetic and
pragmatic imperatives: a commitment to information freedom, a mistrust of
authority, a heightened dedication to meritocracy, and the " rm belief that
computers can be the basis for beauty and a better world (ibid., 39– 46).

In many respects, the fact that academics, journalists, and hackers alike
refer to the existence of this ethic is a testament not only to the superb ac-
count that Levy offers— it is still one of the " nest works on hacking— but
also to the fact that the hacker ethic in the most general sense is an apt way
to describe some contemporary ethics and aesthetics of hacking. For exam-
ple, many of the principles motivating free software philosophy reinstanti-
ate, re" ne, extend, and clarify many of those original precepts. Further, and
rarely acknowledged, Levy’s account helped set into motion a heightened
form of re2 exivity among hackers. Many hackers refer to their culture and
ethics. It is an instance of what Marshall Sahlins (2000, 197; see also Car-
neiro da Cunha 2009) describes as “contemporary culturalism”— a form of
“cultural self- awareness” that renders culture into an “objecti" ed value.”
This political dynamic of self- directed cultural representation is suggested
in the following quote by Seth Schoen, an avid free software advocate and
staff technologist at the Electronic Frontier Foundation. In the " rst line of
text that appears on his Web page, Schoen announces, with pride: “I read
[Levy’s Hackers] as a teenager. [. . .] I was like, ‘God damn it, I should be
here!’ Then, about ten years later, I thought back about it: ‘You know, if
there was a fourth section in that book, maybe I would be in there!’ That’s
a nice thought.”11

1 8 I N T RO D U C T I O N

As I delved deeper into the cultural politics of hacking, though, I began to
see serious limitations in making any straightforward connections between
the hacker ethic of the past and the free software of the present (much less
other hacker practices). Most obviously, to do so is to overlook how ethi-
cal precepts take actual form and, more crucially, how they transform over
time. For example, in the early 1980s, “the precepts of this revolutionary
Hacker Ethic,” Levy (1984, 39; emphasis added) observes, “were not so
much debated and discussed as silently agreed upon. No Manifestos were
issued.” Yet (and somewhat ironically) a mere year after the publication of
his book, MIT programmer Richard Stallman charted the Free Software
Foundation (FSF) ([1996] 2010) and issued “The GNU Manifesto,” insist-
ing “that the golden rule requires that if I like a program I must share it with
other people who like it.”12 Today, hacker manifestos are commonplace. If
hackers did not discuss the intricacies of ethical questions when Levy " rst
studied them, over the span of two decades they would come to argue about
ethics, and sometimes as heatedly as they argue over technology. And now
many hackers recognize ethical precepts as one important engine driving
their productive practices— a central theme to be explored in this book.

Additionally, and as the Mitnick example provided above illustrates so
well, the story of the hacker ethic works to elide the tensions that exist
among hackers as well as the different genealogies of hacking. Although
hacker ethical principles may have a common core— one might even say a
general ethos— ethnographic inquiry soon demonstrates that similar to any
cultural sphere, we can easily identify great variance, ambiguity, and even
serious points of contention.

Therefore, once we confront hacking in anthropological and historical
terms, some similarities melt into a sea of differences. Some of these dis-
tinctions are subtle, while others are profound enough to warrant what I,
along with Alex Golub, have elsewhere called genres of hacking (Coleman
and Golub 2008). F/OSS hackers, say, tend to uphold political structures of
transparency when collaborating. In contrast, the hacker underground, a
more subversive variant of hacking, is more opaque in its modes of social
organization (Thomas 2003). Indeed, these hackers have made secrecy and
spectacle into something of a high art form (Coleman 2012b). Some hackers
run vibrant technological collectives whose names— Riseup and May" rst—
unabashedly broadcast that their technical crusade is to make this world a
better one (Milberry 2009). Other hackers— for example, many “infosec”
(information security) hackers— are " rst and foremost committed to secu-
rity, and tend to steer clear of de" ning their actions in such overtly po-
litical terms— even if hacking usually tends to creep into political territory.
Among those in the infosec community there are differences of opinion as
to whether one should release a security vulnerability (often called full dis-
closure) or just announce its existence without revealing details (referred to
as antidisclosure). A smaller, more extreme movement that goes by the name

A TA L E O F T WO WO R L D S 1 9

of antisec is vehemently against any disclosure, claiming, for instance, in one
manifesto that it is their “goal that, through mayhem and the destruction
of all exploitive and detrimental communities, companies, and individuals,
full- disclosure will be abandoned and the security industry will be forced to
reform.”13 There is also an important, though currently untold, story about
gaming and hacking, not only because hackers created some of the " rst
computer games, notably Space Wars, written in 1962, but because of the
formal similarities between gaming and hacking as well (Dibbell 2006).

National and regional differences make their mark as well. For instance,
southern European hackers have followed a more leftist, anarchist tradi-
tion than their northern European counterparts. Chinese hackers are quite
nationalistic in their aims and aspirations (Henderson 2007), in contrast to
those in North America, Latin America, and Europe, whose antiauthoritar-
ian stance makes many— though certainly not all— wary of joining govern-
ment endeavors.

Finally, while the brilliance of Levy’s account lies in his ability to demon-
strate how ethical precepts fundamentally inhere in hacker technical prac-
tice, it is important to recognize that hacker ethics, past and present, are not
entirely of their own making. Just a quick gloss of the language many hack-
ers frequently invoke to describe themselves or formulate ethical claims—
freedom, free speech, privacy, the individual, and meritocracy— reveals that
many of them unmistakably express liberal visions and romantic sensibili-
ties: “We believe in freedom of speech, the right to explore and learn by
doing,” explains one hacker editorial, “and the tremendous power of the
individual.”14 Once we recognize the intimate connection between hacker
ethics and liberal commitments and the diversity of ethical positions, it is
clear that hackers provide less of a unitary and distinguishable ethical posi-
tion, and more of a mosaic of interconnected, but at times divergent, ethical
principles.

Given this diversity, to which I can only brie2 y allude here, the hacker
ethic should not be treated as a singular code formulated by some homoge-
neous group called hackers but instead as a composite of distinct yet con-
nected moral genres. Along with a common set of moral referents, what
hacker genres undoubtedly share is a certain relation to legality. Hacker
actions or their artifacts are usually either in legally dubious waters or at the
cusp of new legal meaning. Hence, they make visible emerging or conten-
tious dilemmas.

Although hackers certainly share a set of technical and ethical commit-
ments, and are in fact tied together by virtue of their heated debates over
their differences, given the existence of the diversity just noted, my claims
and arguments should not be taken as representative of all hacking, even
though for the sake of simplicity (and stylistic purposes), in the chapters
that follow I will often just refer to hackers and hacking. My discussion
is more modest and narrow for it will stick primarily to the example of

2 0 I N T RO D U C T I O N

free software.15 My preference for announcing the “self- conscious, serious
partiality” (Clifford 1986, 7) of this account comes from witnessing mo-
tivations, ethical perceptions, desires, and practices far more plastic, 2 ex-
ible, sublime, contradictory, and especially " ery and feverish than usually
accounted for in academic theories. The world of hacking, as is the case
with many cultural worlds, is one of reckless blossoming, or in the words of
Rilke: “Everything is blooming most recklessly; if it were voices instead of
colors, there would be an unbelievable shrieking into the heart of the night.”

OM I S S I O N S A N D CH A P T E R OV E RV I E W

Some readers may be asking why I have not addressed Silicon Valley entre-
preneurship and Web 2.0, both of which might further illuminate the ethics
and politics of F/OSS.16 For those interested in Web 2.0— a term that is ban-
died around to refer to nearly all contemporary digital tools and the social
practices that cluster around these technologies— you might want to jump
to the short epilogue, where I critique this term. It is a moniker that obscures
far more than it reveals, for it includes such a wide range of disparate phe-
nomena, from corporate platforms like Flickr, to free software projects, to
dozens of other digital phenomena. In fact, by exploring in detail free soft-
ware’s sociocultural dynamics, I hope this book will make it more dif" cult
to group free software in with other digital formations such as YouTube, as
the media, pundits, and some academics regularly do under the banner of
Web 2.0.

The relationship between Silicon Valley and open source is substantial as
well as complicated. Without a doubt, when it comes to computers, hackers,
and F/OSS, this high- tech region matters, as I quickly came to learn within
weeks of my arrival there. For the last thirty years, hackers have 2 ocked to
the Bay Area from around the world to make it one of their most cherished
homelands, although it certainly is not the only region where hackers have
settled and set deep roots. At the turn of this century, open source also be-
came the object of Silicon Valley entrepreneurial energy, funding, and hype,
even though today the fever for open source has diminished signi" cantly,
redirected toward other social media platforms.

The book is thus not primarily about free software in Silicon Valley. In
many respects my material tilts toward the North American and European
region but, nevertheless, I have chosen to treat free software in more gen-
eral than regional registers as well, so as to capture the reality of the legal
transnational processes under investigation along with the experience of
the thousands and thousands of developers across the world. Debian, for
example, has developers from Japan, Australia, Canada, New Zealand, all
over western and eastern Europe, Brazil, Venezuela, Argentina, and Mexico.17
I decided on this approach as it is important to demonstrate different values

A TA L E O F T WO WO R L D S 2 1

and dynamics at play than those found in Silicon Valley, which are too often
mistaken to represent the commitments of all engineers, computer scientists,
and hackers.18

Coding Freedom is composed of six chapters, divided conceptually into
pairs of two. The " rst two chapters are historically informed, providing the
reader with a more general view of free software. Chapter 1 (“The Life of
a Free Software Hacker”) provides what is a fairly typical life history of a
F/OSS hacker from early childhood to the moment of discovering the “gems”
of free software: source code. Compiled from over seventy life histories, I
demonstrate how hackers interact and collaborate through virtual technolo-
gies, how they formulate liberal discourses through virtual interactions, how
they came to learn about free software, and how they individually and col-
lectively experience the pleasures of hacking. I also offer an extended discus-
sion of the hacker conference, which I argue is the ritual (and pleasurable)
underside of discursive publics. Chapter 2 (“A Tale of Two Legal Regimes”)
presents what were initially two semi- independent legal regimes that over
the last decade have become intertwined. The " rst story pertains to free
software’s maturity into a global movement, and the second turns to the glo-
balization and so- called harmonization of intellectual property provisions
administered through global institutional bodies like the World Trade Orga-
nization. By showing how these trajectories interwove, I emphasize various
unexpected and ironic outcomes as I start to elaborate a single development
that will continue to receive considerable treatment later in the book: the
cultivation, among hackers, of a well- developed legal consciousness.

The next two chapters provide a close ethnographic analysis of free soft-
ware production. Chapter 3 (“The Craft and Craftiness of Hacking”) pres-
ents the central motif of value held by hackers by examining the practices
of programming, joking, and norms of socialization through which they
produce software and their hacker selves. Partly by way of humor, I tackle
a series of social tensions that mark hacker interactions: individualism and
collectivism, populism and elitism, hierarchy and equality as well as artistry
and utility. These tensions are re2 ected but also partially attenuated through
the expression of wit, especially jokes, and even funny code, whereby jokes
(“easter eggs”) are included in source code. Chapter 4 (“Two Ethical Mo-
ments in Debian”) addresses ethical cultivation as it unfolds in the largest
free software project in the world— Debian. This project is composed of over
one thousand developers who produce a distribution of the Linux operating
system (OS). I present and theorize on the tensions between Debian’s gover-
nance, which blends democratic majoritarian rule, a guildlike meritocracy,
and ad hoc deliberations. In comparing these three modes of governance, I
unearth various ethical processes— informal, formal, pedagogical, and dra-
matic— by which Debian developers inhabit a liberally based philosophy
of free software, and use it as an opportunity to revisit the tension between
liberal individualism and corporate sociality explored earlier.

2 2 I N T RO D U C T I O N

The " nal two chapters engage with more overtly political questions,
examining two different and contrasting political elements of free soft-
ware. Chapter 5 (“Code Is Speech”) addresses two different types of legal
pedagogy common among free software developers. First, in the context
of Debian, I look at everyday legal learning, where debating and learning
about the law is an integral part of project life. I then compare this with
a series of dramatic arrests, lawsuits, and political protests that unfolded
between 1999– 2004 in the United States, Europe, and Russia, and on the
Internet, and that allowed for a more explicit set of connections to be drawn
between code and speech. These demonstrations were launched against
what was, at the time, a relatively new copyright statute, the DMCA, and
the arrest of two programmers. These multiyear protests worked, I argue,
to stabilize a relatively nascent cultural claim— nearly nonexistent before
the early 1990s— that source code should be protected speech under the
First Amendment (or among non- American developers, protected under free
speech laws). In contrast to the political avowal of the DMCA protests, my
conclusion (“The Politics of Disavowal and the Cultural Critique of Intel-
lectual Property Law”) discusses how and why hackers disavow engage-
ment in broad- based politics, and instead formulate a narrow politics of
software freedom. Because a commitment to the F/OSS principles is what
primarily binds hackers together, and because many developers so actively
disavow political associations that go beyond software freedom, I contend
that the technoscienti" c project of F/OSS has been able to escape the various
ideological polarizations (such as liberal versus conservative) so common in
our current political climate. F/OSS has thus been taken up by a wide array
of differently positioned actors and been placed in a position of signi" cant
social legibility whereby it can publicly perform its critique of intellectual
property law.

Finally, to end this introduction, it is worth noting that this book is not
only an ethnography but also already an archive of sorts. All cultural for-
mations and ethical commitments are, of course, in motion, undergoing
transformation, and yet many technological worlds, such as free software,
undergo relentless change. What is written in the forthcoming pages will
provide a discrete snapshot of F/OSS largely between 1998 and 2005. Much
of this book will still ring true at the time of its publication, while other ele-
ments have come and gone, surely to have left a trace or set of in2 uences,
but no longer in full force. And despite my inability to provide a warranty
for this archival ethnography, I hope such an account will be useful in some
way.

PART I

HISTORIES
••

While we read history we make history.
— George William Curtis, The Call of Freedom

The next two chapters are general in their scope, meant to introduce read-
ers to the world of free software, and do so from two related although

distinct vantage points, both historically informed. Chapter 1, as mentioned
above, describes a typical life history compiled from over " fty in- person
interviews along with twenty email and/or Internet Relay Chat (IRC) in-
terviews. It portrays everyday life and historical transformation as many
experience it: in a mundane register, and without the awareness that we are
making or are part of history. What it seeks to show is how hackers become
hackers slowly over time and through a range of varied activities. This pro-
cess, though experienced in quotidian ways, is ultimately a historical affair,
for the hackers of yesteryear are not quite the same as those of today, despite
crucial continuities. The " rst chapter tracks some of the changes within free
software and also provides basic sociological data about free software de-
velopers: where they learned to program, where they work, and how they
interact with other developers.

Chapter 2 turns away from personal accounts to tell a more global story.
It traces two distinct but overlapping legal trajectories and their eventual
clash. During the same period in which intellectual property law assumed
tremendous and global regulatory power, free software also rose to promi-
nence, eventually providing one of the most robust challenges ever to intel-
lectual property laws. The legal alternatives made and supported by free
software did not always follow from politically motivated action, but rather
from the experiences involved in the production of free software. These ex-
periences were formative, leading a generation of hackers to become astute
legal thinkers and producers— knowledge that was in turn eventually mar-
shaled for political protest against the current intellectual property regime.

Before turning to these two chapters, it is worth highlighting how histor-
ical representation is a delicate play of fabrications, or stated a little more

eloquently by Voltaire in his short story “Jeannot et Colin, “fables agreed
upon.” By fable, I don’t mean false, yet it is imperative to acknowledge the
constructed nature of the accounts. Choices have to be made about what
to include, what to exclude, and most important, how to include them. For
the life history chapter, I have chosen stories, elements, and events that I
hope faithfully capture the zeitgeist of becoming a free software hacker,
ending with one of the most memorable hacker events: the hacker confer-
ence. The subsequent chapter, by examining the dual character of our age,
whereby we are subject to an omnipresent legal system and also have at
our disposal a vibrant set of legal alternatives, is meant to inspire a para-
doxical degree of hope and despair, thereby contributing, in its reading, to
the making of history.

C H A P T E R 1

The Life of a Free Software Hacker

••

One may say that true life begins where the tiny bit begins— where
what seems to us minute and in" nitely small alterations take place.

True life is not lived where great external changes take place—
where people move about, clash, " ght and slay one another— it is

lived only where these tiny, tiny in" nitesimal changes occur.
— Leo Tolstoy, “Why Do Men Stupefy Themselves?”

TH E BA S I C “SP E C S” O F A L I F E W O R L D

A life history, by de" nition, belongs uniquely to one person, textured by
innumerable details, instances, events, idiosyncrasies, and happenings.1 As
such, the writing of a “typical” life history is an impossible, quixotic task,
seeking to standardize and represent what evades such a neat distillation.
Nonetheless, to the best of my ability, here I provide some fairly typical ex-
periences derived primarily from seventy interviews and other sources, such
as blogs, conversations, and autobiographical tales.

Although the exact details vary, many hackers reminisced about their
technological lives using a relatively standard script that traces how their in-
born af" nity for technology transformed, over time and through experience,
into an intense familiarity. A hacker may say he (and I use “he,” because
most hackers are male) " rst hacked as an unsuspecting toddler when he
took apart every electric appliance in the kitchen (much to his mother’s hor-
ror). By the age of six or seven, his actions ripened, becoming volitional. He
taught himself how to program in BASIC, and the parental unit expressed
joyous approval with aplomb (“look, look our little Fred is sooo smart”).
When a little older, perhaps during adolescence, he may have sequestered
himself in his bedroom, where he read every computer manual he could get
his hands on and— if he was lucky enough to own a modem— connected
to a bulletin board system (BBS). Thanks to the holy trinity of a computer,
modem, and phone line, he began to dabble in a wider networked world
where there was a real strange brew of information and software to ingest.

2 6 C H A P T E R 1

He could not resist. He began to drink himself silly with information on
UFOs, bomb building, conspiracies, and other oddities, downloading differ-
ent categories of software, shareware, sometimes warez (pirated software),
and eventually free software.2 Initially he spent so much time chatting he
would “pass out on his keyboard, multiple times.” The parents, confusing
locked doors and nocturnal living with preteen angst and isolation, won-
dered whether they should send their son to a psychologist.

Once he met like- minded peers in high school, college, or online, the boy’s
intellectual curiosity ballooned. He initiated a quest to master all the ins and
outs of a technical architecture like the Linux OS, one or two computer
languages, and the topographical terrain and protocols of a really cool new
virtual place called the Internet. He soon discovered he could never really
master all of this, and that he actually exists in an asymptotic relationship to
technology. Nonetheless, he grew to adore the never- ending, never- " nished
nature of technological production, and eventually fell, almost entirely by
accident, into a technical movement.

That movement, the free software movement, seemed to describe his per-
sonal experiences with technology in a sophisticated yet accessible language.
It said that sharing was good for the community, and that access to source
code is not only handy but also the basis by which technology grows and
improves. Eventually, he understood himself to be connected to a translocal
community of hackers and grew increasingly peeved at their stereotyped
representation in the media. As he grew older and more " nancially indepen-
dent (thanks to lucrative information technology jobs as a programmer or
system administrator that gave him the " nancial freedom, the “free time,”
to code for volunteer projects, or alternatively paid him explicitly to work
on free software), he consistently interacted with other geeks at work, over
IRC, on a dozen (or more) mailing lists, on free software projects, and less
occasionally, at exhausting and superintense hacker conferences that left
him feeling simultaneously elated and depressed (because they invariably
have to come to an end).

Over time, and without realizing when it all happened, he didn’t just
know how to hack in Perl, C, C ++, Java, Scheme, LISP, Fortran, and Py-
thon but also came to learn arcane legal knowledge. His knowledge about
technology had become encyclopedic, but ironically he was still wholly de-
pendent on the help of his peers to get just about anything done. He " rmly
came to believe that knowledge access and transactions of sharing facilitate
production, that most types of software should be open source, and that
the world would be a better place if we were just given choices for software
licensing. Although not exactly motivated to engage in F/OSS production to
ful" ll a political mandate, he understood the political dimension of coding in
an entirely new light. In fact, since reading Lawrence Lessig’s Code and Other
Laws of Cyberspace, and through his daily reading of Slashdot and Boing
Boing, popular Web sites reporting technology news and geek esoterica, he

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 2 7

came to understand that code is law; code regulates behavior. But so do the
copyright industries, which are using everything in their arsenal to funda-
mentally shape legal policy and even behavior. They suck.

••

This chapter expands the narrative introduced above to present some con-
sistent features of the hacker lifeworld by visiting the sites, practices, events,
and technical architectures through which hackers make as well as remake
themselves individually and collectively. Drawing on a rich set of sources, I
typify common life experiences of many F/OSS developers. I have attempted
to include the sense of excitement, humor, and sensuality that I witnessed as
hackers told me about their adventures in hacking.

Following the anthropologist Michael Jackson (1996, 7– 8), I understand
a lifeworld as “that domain of everyday, immediate social existence and
practical activities with all of its habituality, its crises, its vernacular and idi-
omatic character, its biographical particularities, its decisive events, and in-
decisive strategies.” The account I present of the hacker lifeworld might be
better described as a tempo- historical phenomenology. My concern is not to
privilege one of its elements (such as a detailed description of the experience
of administering a server, programming, or hacking with peers) but instead
to paint a panoramic picture of hacking over a fairly large swath of time.
Through this, it will be clear that hackers make and remake themselves in a
slow, piecemeal rhythm as they engage in diverse activities (coding, debat-
ing, reading, gaming, playing, and socializing) in equally diverse settings and
institutions (the Internet, conferences, development projects, places of work,
and at home).

Although the following life history uses the " rst- person point of view
of phenomenology, I follow Alfred Schutz (1967, 1970) and Maurice
Merleau- Ponty (1962) in maintaining that experience is intersubjective.
Personal experience is frequently rooted in collective and practical activi-
ties whose nature is stable, coherent, and patterned, although constantly, if
minutely, in 2 ux. Even if transformations are rarely detectable to those im-
mersed in the everyday 2 ux of living, an existing lifeworld, says Merleau-
Ponty (ibid., 453), is “never completely constituted,” for action and re-
action occur in shifting contexts, and thus “we are open to an in" nite
number of possibilities.” While lifeworlds are most often experienced as
free of contradiction and ambiguity (in contrast to the large- scale events
and tribulations usually thought to make up the stuff of history, which I
visit in the next chapter), they are invariably stamped by particular events,
material conditions, and time.

There is one event, however, which is generally experienced as startlingly
unique and special— the hacker conference, which I cover in detail at the
end of the chapter. The conference is culturally signi" cant because it allows

2 8 C H A P T E R 1

hackers to collectively enact, make visible, and subsequently celebrate many
elements of their quotidian technological lifeworld. Whether it is by laying
down cable, setting up a server, giving talks about technology, or hacking
up some new source code, these actions at the hacker conference unfold in
an emotionally charged setting. What the conference foremost allows for
is a “condition of heightened intersubjectivity” (Collins 2004, 35) where
copious instances of hacking are brought into being and social bonds be-
tween participants are made manifest, and thus felt acutely. Taking what is
normally experienced prosaically over the course of months, hackers collec-
tively condense their lifeworld in an environment where bodies, celebration,
food, and drink exist in excess.

Even if most of the chapter af" rms Tolstoy’s maxim cited above, the
hacker conference allows participants to celebrate this very quotidian life
in more exceptional terms. In short, for a brief moment in time, the ordi-
nary character of the hackers’ social world is ritually encased, engendering
a profound appreciation and awareness of their labor, friendships, events,
and objects that often go unnoticed due to their piecemeal, mundane nature.

TH E TH O U S A N D- MI L E JO U R N E Y STA RT S
W I T H A PE R S O N A L CO M P U T E R

Most F/OSS developers got their start with technology at a fairly young age,
usually around seven or eight, although sometimes as young as four or " ve.
When asked in formal interviews about when they " rst used computers,
F/OSS developers would almost without fail volunteer the name and model
number of the speci" c device (Atari 130xe, Radio Shack Tandy 1000 286,
Apple IIe, Commodore 64, and the Sinclair Spectrum). As they spoke of
these early computers that commanded so much of their youthful attention,
it was unmistakable that they held a deep fondness for the anchor— the
computer— that pulls hackers together as a collective.

Many would use and eventually colonize a computer purchased by their
parents. Those who came from working- class families used a school, library,
or friend’s computer. Later on, some would attribute their ability to climb
up the class ladder because of capacities and skills acquired through com-
puter use— a climb that many claimed they were not intentionally seeking.
Rather, the climb was a by- product of economically valuable knowledge
gained by following their personal passion for computing. They wrote their
" rst programs often by using some source code they copied from a man-
ual or from one of the early electronic magazines, such as Nibble, Popular
Computing, Byte, or Dr. Dobbs. Retrospectively, they came to understand
this as their " rst act of sharing code. Those who started to hack in the late
1970s or 1980s did most of their learning through magazines or friends,
by “memorizing” manuals they borrowed from teachers, or later on, at the
workplace.3

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 2 9

Nearly all of the developers I interviewed learned some of the basics of
programming, many with the computer language BASIC, by writing soft-
ware for some of the " rst mass- marketed, relatively affordable personal
computers. While some only dabbled with BASIC, others became quite pro-
" cient in it. Child programmers would often write short programs from
scratch, or modify some existing piece of software to enhance its power and
features. Johan explained that “by sixth grade, I had pretty much reached my
peak with the Atari, writing controller software for the joysticks and track-
ball, using trickery like character set rede" nition to make games at a higher
resolution than any of its graphics mode supported.”4 During this period,
many hackers spent much of their time learning about computers by them-
selves, coding small bits of software mostly for fun, excitement, learning, or
self- use. Some hackers alternated between coding and playing games, and
they frequently coded games or traded more sophisticated game software
with friends at school. Many recalled enjoying programming because it
provided “immediate grati" cation” or was “instantly rewarding”— features
that many still " nd seductive.

Although many of their childhood experiences with programming were
personal and noncommercial, a surprising number of geeks, by the time
they reached high school (sometimes as early as late elementary school),
wrote software that was used or purchased by peers or superiors. Whether
via informal uses (a teacher using a student’s program to randomize the
homeroom seating arrangements, for example) or more formal ones (a local
public library purchasing a child’s math program), many child programmers
witnessed their creative outputs being used in the real world. They expe-
rienced early on that programming was not just personally gratifying but
also that it held a form of social utility and/or economic power that solved
real- world problems.

As kids, many programmers had already started to collaborate. Some
of these youthful collaborations became the basis of close friendships that
entailed playful public contests. Bill told me that in high school, “there were
two or three folks who I really developed long- lasting relationships and
friendships with. [. . .] We would stay after school and mess with the
computer for hours. It was just an intense number of hours playing with
systems and goading each other on.” Others went to math camp, where
they found like- minded technical companions. Or as explained by Doug, it
was not uncommon to “emulate” a friend’s software by writing one’s own
version (which he told me with pride ran “more ef" ciently”).5 Thus young
programmers engaged in a practice of “mimesis” (Benjamin [1933] 1999)
that combined competitiveness with at least a practical (if not yet ethical)
acknowledgment that one is bound to peers, often friends, through copro-
duction. Later on, they would encounter a social movement that brought
intelligibility to these early childhood experiences.

By the time programmers reached high school, many of them came to
adopt the identity of hacker or programmer— an identity now acquired at

3 0 C H A P T E R 1

progressively younger ages because of access to the Internet, where discus-
sion about the cultural and technical facets of hacking is common. Many
hackers did not awaken to a consciousness of their “hacker nature” in a
moment of joyful epiphany but instead acquired it imperceptibly. In some
cases, certain books, texts, movies, and places of interaction sparked this
association. Some came to identify their personal relationship to computers
as hacking by, for example, watching a movie (War Games), reading a book
(Hackers) or manifesto (“The GNU Manifesto”), or during interactions
with other people who also called themselves hackers in various locations
such as a user group meeting, conference, math camp, or most especially a
BBS where hackers congregated in droves during the 1980s and early 1990s.

ME E T I N G OT H E R HA C K E R S O N BBSS

A BBS is a computerized meeting and announcement system where users
can upload and download " les, make announcements, play games, and
have discussions. Many were run and frequented by hackers, and hence dis-
courses and texts about hacking were ubiquitous (Scott 2005; Sterling 1992;
Thomas 2003).6 While the Internet existed in the 1980s, and its architec-
ture was open, practically speaking it operated under a lock, with the keys
available only to a select number of hackers, engineers, administrators, and
scientists gainfully employed at research labs, universities, and government
agencies (Abbate 1999). Given this, BBSs played an important role in hacker
history because they were the basis for one of the " rst expansions of hacking
through which hackers could interact autonomously, anonymously, and in-
dependently of of" cial institutions.7 Although this networked expansion en-
tailed a movement outward and beyond institutions (such as the workplace
and university), the use of the BBS on a personal computer also represented
an inverse move in the other direction, into the privacy of the home. Prior to
the 1970s and even for much of the early 1980s, most computing occurred
at work or the university.

So long as they could pay the phone bill and temporarily bracket off ba-
sic biological needs like sun and sleep, hackers could explore BBSs to their
heart’s delight, with each BBS independent like a virtual pond. BBSs were
not networked until FidoNet came along, creating a " rst taste of global
networking for those who did not have Internet access.8 BBSs were excit-
ing, for they were informal bazaars where one could access and trade rare
as well as sometimes- seedy information. Files traded there spanned low-
brow conspiracy theory, hard- hitting political news, playful nonsense, low-
grade and more rarely high- octane noir, voyeurism, personal gossip, and one
of the most important cultural goods among hackers, software (including
shareware, warez, and eventually free software). Before free software was
widely known, many young programmers acquired their software primarily

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 3 1

on BBSs, and many used this medium to release their own software into the
world, usually as shareware.

Since BBSs were unconnected to each other until FidoNet, and long-
distance phone bills were expensive (especially for kids and teenagers),
many boards were quite rooted in place, with users living in the same city,
suburb, region, or local calling area (within which calls didn’t incur intra-
state long- distance charges). The location of many BBSs was clear, as much
of the online information was about local politics, news, and so forth. Many
hackers recall BBSs as places of audacious social interactions that readily
spilled into the real world during “BBS meet ups,” when participants would
get together at someone’s home or “the local Denny’s at 3 in the morning”
to continue doing what they did online: talk and trade software. Many BBS
members became close friends. It is not farfetched to describe some areas
has having a dynamic, complex BBS scene in which hackers, as one of them
told me, would “haunt the multiliners and knew most everyone in the scene
in the LA area.”

At some meetings, hackers would erect a small- scale informal market to
barter software and games, with such marketplace transactions cementing
hackers together. As portrayed by one hacker in an email message, “My
friends and I had shoebox after shoebox of games and utilities. [. . .] We’d
trade over BBSs, at BBS meets (since they were all regional, it wasn’t uncom-
mon to have meets once every couple months).”

Despite its locally rooted nature and limited network capacity, a BBS,
much like the Internet now, was technologically multifaceted, allowing for
private and public interactions. Some BBSs were home to more subversive,
harder- to- access underground hacker groups, which gained media notoriety
in the late 1980s and early 1990s after a string of raids and arrests due to
their actions, including some computer break- ins. Largely operating from
within private BBS bunkers, these groups operated on an invite- only basis
(Sterling 1992). Other BBSs and groups existed more publicly with phone
access numbers listed in local computer magazines or posted on other BBSs,
thereby attracting many nontechnical users who shared information on this
platform.

The mid- to late 1990s heralded the end of the BBS era— a passing that
hackers would not let slip away without due commemoration and celebra-
tion. In 1993, to bid adieu to this artifact, hackers organized the " rst Defcon
in Las Vegas. Meant as a onetime event, its popularity overrode its original
intent, and Defcon remains one of the largest celebrations of hacking. The
fact that the BBS period is now over indicates that much of the hacker life-
world is constituted through technological infrastructures with their own
features and histories, and as subject to birth, growth, and decay as any
other social formation.

While many younger hackers have never used a BBS, older geeks (which
can mean a still- young thirty years of age, though there are certainly much

3 2 C H A P T E R 1

older ones) in the presence of their younger counterparts will, at times, fondly
reminisce about life and hacking on BBSs. For example, once when I asked
about BBSing on an IRC channel, all the geeks started to share memories of
this vanished era. One programmer humorously and with some retroactive
embellishment explained his passion for BBSing with this short account:

<hacim> you call
<hacim> it is busy
<hacim> you set your modem on redial
<hacim> you wait
<hacim> your mom yells at you to get off the phone
<hacim> you stop redial
<keg> haha
<hacim> she talks with whoever while you impatiently wait
<keg> you ! nally learn *70, and life changes forever [*70 stops call wait-

ing, which if activated, would boot you off the modem when someone
else calls]

<hacim> you hide behind her door listening to her talk so you know ex-
actly when she has hung up

<keg> or 1170 on rotary :) [the code for disabling call waiting on rotary]
<hacim> while sighing really loud so she can hear
<hacim> then you can call!
<hacim> sweeeeet!
<hacim> you run upstairs
<hacim> anyways, you manage to call, you get the REALLY

SATISFYING modem noise
<hacim> you login
<hacim> and then you go the message boards
<hacim> you crawl them
<hacim> and you see what the last person posted on each subject board
<hacim> sometimes it was the last person to call; that felt really cool
<hacim> the thing was, you had these message boards, where you talked

about speci! c subjects
<hacim> and people really got into exploring them
<hacim> and everyone KEPT up on them

TH E IN T E R N E T

As these lower- tech ponds for virtual communication dried up, a roaring
ocean replaced them: the Internet. If the BBS felt like a small, cramped, and
overpriced studio (although retroactively recalled as special because of its
intimacy), the Internet was more like an outlandishly spacious penthouse
apartment with many luxurious features— and a much more affordable one
with each passing year.

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 3 3

With its array of complementary communication tools, email, " le transfer
protocols (FTP), and IRC, hackers naturally 2 ocked to this technological oa-
sis to continue to do what they did with unwavering passion on BBSs: access
information, talk, collaborate, trade " les, and make friends as well as some
enemies. Geeks started to productively mine mailing list archives for techni-
cal data, and eventually Web browsers facilitated the search and discovery
process. IRC, created in 1988 by a student in Finland, largely replaced the
BBS for real- time communication. In a short period, an astounding number
of IRC networks and individual channels spanning the globe appeared.9

By virtue of the knowledge gained from these early experiences, geeks
began to land gainful employment in then- nascent Internet- related indus-
tries (what we think of as the public Internet in certain respects began in
1992, when the US government opened it up to commerce). Some geeks
operated one- person consulting shops, working from home- building data-
base back ends for e- commerce Web sites. Others joined forces, dropping
out of college to start a local or national Internet service provider or other
small- scale technology " rm. Hackers living in Silicon Valley would work
ridiculously long hours for handsome bene" ts and in2 ated stock options at
hip, smallish dot- coms, or more traditional tech " rms like Oracle, Apple,
and Adobe.

FR E E SO F T WA R E

During the years of early technological spelunking on the Internet, many hack-
ers also came to learn about a new category of software— free software. Like
the Internet, its full potential and meaning became apparent primarily through
assiduous excavation, use, technological extension, and endless discussion
with peers. During interviews, many developers could date their " rst rendez-
vous with free software— less in reference to calendar time, but usually with
mention of the release version number of a piece of software (“I " rst discov-
ered Linux in v0.9”) and the place of discovery (such as at work or school).

Whatever the location or time, most programmers who learned about
free software anywhere between 1985 and 1996 greeted it as if they had
stumbled onto a hidden treasure trove of jewels, with the gems being Unix-
based software and its precious underlying source code. The experience of
discovering that there existed an (almost) fully working Unix system (Linux
is a 2 avor of Unix, and there are dozens of 2 avors) for a personal computer
with available source code was, as one developer put it, “jaw- dropping.”
Another hacker described it as “almost kinda like a hippie dream thing.”
Excited but bewildered, the hackers I interviewed dove into this new and
small technological cove, never to look back.

For much of the 1990s, but especially in the early part of the decade, the
channels through which hackers learned about free software were informal,

3 4 C H A P T E R 1

primarily by word of mouth (in person or online) at school or work, or per-
haps through one of the early print journals. As one South African developer
now living in the Netherlands recounted during an interview:

It was a friend in that big [college] residence who came along with a
2 oppy, and because of his typical, very dramatic personality, he just
put the 2 oppy in my computer and switched it on, and up came Linux
0.9, and it was the end of 1993 and that was the end for me as well,
or at least the beginning. All these 2 ashing lines coming by [. . .] just
immediately appealed to me.

The “ah- ahhh,” “oh my gosh,” “this is so cool,” “oh my god” factor of dis-
covering free software depended on a myriad of intersecting elements. For
some hackers, free software meant they could " nally have a workable Unix
operating system for their personal computer (previously, Unix ran primar-
ily on larger, more expensive machines). Gone were the days of having to
trudge through snowy streets to access a beloved Unix machine in the com-
puter science department.

Prior to Linux, there were few workable Unix systems that ran on per-
sonal computers and were nonproprietary. The production of Linux thus
represented a general liberation of the Unix architecture, and also inau-
gurated its individualization, decentralization, and proliferation. Unhitched
from the sole province of the university, corporation, and stringent rules
of conventional intellectual property law, Linux was released as a public
good and was also produced in public fashion through a volunteer associa-
tion.10 Most signi" cantly, hackers were able to run Linux on mass- produced
personal computers at home, spending more quality one- on- one time than
before with an architecture that even now, still demands an active and dedi-
cated partner. One programmer explained his early excitement as “" nally”
having “a workshop with all the most powerful tools to hack on real stuff at
home.” Most young hackers, however, were thrilled, and many were down-
right “2 oored,” at the newfound unlimited access to source code.

Yet the real adventure of free software came after its discovery. In the
early days, when Linux distributions were only available off the Net, one
had to download the system from a slow connection, usually a modem— a
technical feat in and of itself. Taking at least a week to accomplish, the
connection would undoubtedly crash, multiple times (but fortunately the
download protocols allowed resuming from where it crashed), and a num-
ber of the 2 oppies would invariably be corrupt. Once completed, Linux
would often occupy around “forty 2 oppy disks.”11 With a stack of 2 oppies,
some hackers would immediately begin installation, and then had to hack
at the system to make it actually work. Others " rst had to fend off accu-
sations of piracy from what some developers intimated was some pesky,
ignorant, low- level computer lab administrator. The annoyed but excited
hacker could offer the administrator only an ambiguous defense, because
at this time most hackers lacked the vocabulary with which to describe the

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 3 5

meaning and purpose of free software. They might have said it was share-
ware, to use a term that probably would have been understood, even if it
was technically incorrect. Without the intimacy that is born from time and
discussion about the nature of objects with peers, free software and Linux
in the early 1990s existed for many hackers as an unconceptualized “thing”
in the ways theorized by Martin Heidegger ([1927] 2008), whose mean-
ing had yet to be actualized, naturalized, or solidi" ed as a social “object”
known collectively by many.

Once the download was complete and the suspicious administrator was
suf" ciently placated, hackers would then proceed to the next phase of the
adventure: the death match of installation. Uninstalled, the OS was an un-
ruly creature that had to be transformed into an obedient object so that it
could be used for other acts of creative production. Until at least around
1998 (and arguably still so with many distributions, depending on the user’s
experience and skills), Linux installation was nothing short of a weeklong
grueling ritual of esoteric initiation into an arcane technical world that
tested skills, patience, and a geek’s deepest resolve to conquer the seemingly
unconquerable. Just to con" gure basic components of a system like X win-
dows (the graphical user interface) required technical wizardry and diligent
work. The install was so precarious in the 1990s that, as a hacker told me,
“you could risk destroying your monitor.”12 Some geeks described installa-
tion as an example of the “larval stage” of hacking—

[a] period of monomaniacal concentration on coding apparently passed
through by all 2 edgling hackers. Common symptoms include the perpe-
tration of more than one 36- hour hacking run in a given week; neglect
of all other activities including usual basics like food, sleep, and per-
sonal hygiene; and a chronic case of advanced bleary- eye. Can last from
6 months to 2 years, the apparent median being around 18 months. A
few so af2 icted never resume a more “normal” life, but the ordeal seems
to be necessary to produce really wizardly (as opposed to merely com-
petent) programmers. See also wannabee. A less protracted and intense
version of larval stage (typically lasting about a month) may recur when
one is learning a new OS or programming language.13

Through this quest, many hackers who had never laid their eyes or hands
on a Unix system came out the other side, transformed as excited disciples
of an existing technical religion that goes back to the early 1970s: that of
the Unix “command line.” If hackers conceive of computers as the general-
purpose machine that allows them the unfettered ability to create in" nite
numbers of minimachines (pieces of software), then Unix is the modus ope-
randi of choice. For example, a hacker named Mark explained that Linux is
“where I started liking the [Unix] paradigm, the whole way of doing things.”
For many it unlocked the hood of their previously locked OS. Many hack-
ers had used Microsoft Windows 3.1 and had often programmed in it. As
further elaborated by one Unix devotee during an interview:

3 6 C H A P T E R 1

But that only offered you so much. [. . .] You had to operate within
the constraints that the Windows environment allowed, but when you
ran Linux you got all the tools and all the pieces, and the hood opened
wide. The constraints were no longer arbitrary; they were limited by
your technical abilities, knowledge, desire to push deeper.

UN I X A S “OU R GI L G A M E S H EP I C”

For those uninitiated in the religion of the command line, it is helpful to
compare Linux/Unix to the most commonly used desktop OS, Microsoft
Windows (which many F/OSS hackers love to loathe). This will provide a
better sense of why Unix is adored as a tinkerer’s paradise, and why it holds
a kindred aesthetic spirit to F/OSS’s philosophy of freedom and sharing. For
those who take the time to learn its intricacies, Unix offers a more interac-
tive relationship between user and OS than Microsoft Windows does. Unix
is architecturally transparent; every part of the system is a “" le” that can
be seen, altered, and customized. It gives users the ability to “go behind the
scenes” to individually con" gure the system for speci" c needs and oper-
ates along a similar logic to that of open source. Customization may mean
something as seemingly insigni" cant as setting your own keyboard shortcuts
(which in fact is crucial if you are typing most of the day, seven days a week)
or rewriting any con" guration " le to optimize your hardware.

In addition, Unix is equipped with a developer environment of tools and
applications called into being not by clicking an icon but instead by a com-
mand written as text. These commands can be used to perform program-
ming or administrative tasks, which can in turn be strung together in inno-
vative ways to create new functionalities. Just as programmers might admire
elegant code, programmers and system administrators also admire as well
as share clever Unix uses and con" gurations. Given that it is considered a
2 exible partner, Unix is loved by hackers: “You can make it work exactly as
you want [it to]. [. . .] There is always some kind of program that does that
little thing different from the one that makes it easier or better for your own
personal plan.” Like coding, a Unix environment works well as one in which
hackers can fashion and cultivate their technical self.

If hackers value Linux/Unix for its ability to be customized, its archi-
tecture is nonetheless held in place as a stable object by a coherent logic of
aesthetic features, technical philosophy, cultural lore, a complicated legal
history, and a peculiar brand of humor, embodied in its very name. Indeed,
like so many hacker naming conventions, the name Unix is a clever his-
torical referent— in this case, indexing its conditions of birth. Unix derives
from another related OS, the much larger Multics, originally developed
in AT&T’s Bell Labs. In 1969 Bell Labs canceled funding for Multics; its
authors, Ken Thomson and Denis Ritchie, salvaged (and many would say

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 3 7

improved) Multics by parsing it down to a much smaller system, which they
renamed Unix. Once Unix was “cut down,” its creators renamed Multics to
“eunuchs” to capture the idea that some really signi" cant “things” had been
cut from its body, but what was created was something forever eternally
beautiful. Eventually, its creators kept the phonetic instantiation of eunuchs
(Unix) to commemorate and signal its conditions of birth as an essentially
castrated version of Multics.

The cultural depth of Unix far exceeds naming conventions. Unix has been
described as “our Gilgamesh epic” (Stephenson 1999), and its status is that
of a living, adored, and complex artifact. Its epic nature is an outgrowth of
its morphing 2 avors, always under development, that nevertheless adhere to
a set of well- articulated standards and protocols: 2 exibility, design simplic-
ity, clean interfaces, openness, communicability, transparency, and ef" ciency
(Gancarz 1995; Stephenson 1999). “Unix is known, loved, understood by so
many hackers,” explains sci- " writer Neal Stephenson (1999, 69), also a fan,
“that it can be re- created from scratch whenever someone needs it.”

Due to its many layers and evolving state, learning the full capabilities
of Unix is a lifelong pursuit, and it is generally accepted that most users
cannot ever learn its full capabilities. In the words of one programmer who
helped me (a novice user) " x a problem on my Linux machine, “Unix is not
a thing, it is an adventure.” As such, for hackers, the processes of working
on or learning about technology, while riddled with kinks and problems, is
an activity de" ned in terms of exploratory, blissful quests. It is often expe-
rienced as a convergence of sensual pleasure, logical rigor, and grounds for
intellectual pedagogy.

Matching its variations is a great storehouse of ancillary knowledge ar-
chived in texts, books, manuals, and especially stories and conversations
about Unix. Dissected in great detail, the endless storytelling (over Unix’s
history, uses, legal battles, problems, and variations) is one important ve-
hicle by which hackers extend themselves into objects, also linking past
generations with current ones. These objects become a material token that
allows hackers to intersubjectively connect with each other. Unix is but one
of the many technical lingua francas (others being programming languages,
text editors, and other tools) by which hackers, system administrators, and
computer users communicate and forge a shared sense of technical com-
mon stock, of sense “know- how,” that mixes technological lore with arcane,
esoteric humor.

“SO M E O N E MU S T BR E W T H E BE E R”

While most hackers " rst became interested in free software on technical
grounds, and were thrilled at having access to a robust OS, some were im-
mediately impressed by Stallman’s (considered to be the father of free

3 8 C H A P T E R 1

software) philosophy, codi" ed in “The GNU Manifesto” included with
many programs, or by reading the " rst free software license, the GNU GPL.
The moral message of software freedom instantly resounded with this mi-
nority of the developers I interviewed. Stallman’s project to ensure software
freedom “just made immediate sense,” one of them told me. Others, how-
ever, were repelled by the message, saying it sounded “too socialistic or ideo-
logical,” even though Stallman actually steered clear of any strong language
of traditional Left/Right (anticapitalism, for example) politics, and instead
used plain and simple language, emphasizing, say, the good that comes from
sharing with your neighbors.

The majority of developers I interviewed, though, were not initially
swayed in either direction, neither especially repelled nor attracted. Many
hackers’ understandings of the morality and legality of free software were
quite rudimentary. Although the technical implications of unhampered ac-
cess to code were usually quite clear, few developers understood this access
in relation to the GPL in particular or legality in general. Largely unaware
of the complicated moral- legal issues surrounding freedom and intellectual
property law (much of which was then still de" ned only through basic terms
and a few documents, later to grow as a body of theory on F/OSS projects),
hackers saw free software as equivalent to “free beer.” This is especially
ironic, since most programmers now adamantly insist that the free in free
software is precisely about “speech, not beer.”

In fact, the very expression “free as in speech” was nearly nonexistent or
at best uncommon until at least the mid- 1990s. Although the message of free-
dom was circulating along with free software, many hackers initially grasped
this new technological wonder and its moral qualities using the language of
money and consumerism. During an interview, Sharkie, now a free software
activist, remarked that he learned about copyright through copyleft— another
commonly used name for the GPL— and elaborated, “I had no understanding
about copyright before this. I knew it was free beer from the beginning and I
thought that was very cool.” Matthew, another developer, expressed a similar
sentiment when he told me “the " rst draw was, I don’t have to pay for this—
awesome!” Sharkie’s and Matthew’s accounts were typical of developers who
" rst learned about free software in the 1980s and early to mid- 1990s, espe-
cially those who were young or students, without a steady income to pay for
expensive software like compilers (a tool that transforms source code, written
in a programming language, into machine readable binary code).

Early in their relationship with this technology, most hackers developed
a strong pragmatic and utilitarian commitment to free software. But the
underlying philosophy underwent change as more developers started to at-
tach and make their own meanings. Access to source code and the model of
open development represented by Linux, they said, was a superior techni-
cal methodology. Many likened it to the scienti" c method as an ideal. They
saw it as under assault, corrupted by abuse of intellectual property law by

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 3 9

corporations and, worse, universities that had started to patent inventions
liberally in the 1980s. Others emphasized the pedagogical freedom that F/
OSS provided them. “I realized,” a developer named Wolfgang wrote me
over email, “that I could delve through that code and learn things that I
could never learn from a high school teacher. It’s one of the reasons why
I feel so strongly about the GPL’d software now; it allows anyone to learn
and participate.”

Some developers who " rst only used free software later developed it and
eventually took the next step: releasing their software under a F/OSS license.
“For free beer to 2 ow,” Devon, another developer, realized, “someone must
brew the beer.” (This developer is quite aware that it is more common to say
that free software is “free as in speech, not beer,” especially since developers
are not barred from selling free software. Yet even if one sells free software,
one cannot close off the source code, and thus there is some sort of free beer
always available, too.) With this line of reasoning, Devon started to release
his own software under the GPL, and soon after, participated in a commu-
nity project. Many began to feel that releasing their own software under the
GPL was just the “right thing to do,” and that it made unarguable pragmatic
sense, because software is a nonscarce resource that bene" ts from continu-
ous contributions and modi" cations.

Matthew, quoted above, described his changing attitudes about free soft-
ware when he told me, “Later [I realized], you know, though I was Joe
Schmoe, I can still make this better. I can do what I want with this. And if I
don’t like it, I can change it, and if I make changes, I can make it available
to other people and [. . .] I am just a regular guy. That is a really powerful
concept.” The experience of using, making, and distributing free software
rendered the language of price largely obsolete, while language about the
“freedom to tinker” and improve the software for oneself as well as for oth-
ers gained more ground.

Soon Linux and other popular pieces of free software became more
common in the geek and engineering communities, and as a result, much
of the fundamental Internet infrastructure was being handled by impor-
tant F/OSS applications. Apache, started in 1995, was powering Web
servers; Sendmail, a program used by servers to transfer email, composed
the lion’s share of mail transfer nodes; Perl was becoming the language of
choice for Web site development; and BIND, a critical piece of the network
infrastructure providing name- to- address translations, was increasingly
popular among system administrators. If many developers " rst thought
of free software as a set of tools that transformed personal computers
into powerful Unix workstations, they quickly learned that it was also the
force powering much of the Internet and hence a socially validated type
of software. This is more remarkable given how many people, such as Sil-
icon Valley businesspeople and managers, knew little about its existence.
The growing ubiquity of F/OSS con" rmed developers’ sense that free

4 0 C H A P T E R 1

software, while lacking an of" cial warranty, marketing, and glossy packag-
ing, was the real deal, equivalent or even superior to proprietary software.
This added to a growing conviction about the technical superiority of the
F/OSS method of development, with its requirement of continual access
to information.

FR E E SO F T WA R E I N T H E WO R K P L A C E

Before the widespread corporate acceptance of free software, some develop-
ers stealthy smuggled free software into work. In the early to mid- 1990s
at some of the larger companies, a few of the most enlightened managers
“could be convinced” to switch their servers to Linux, but for the most part,
use had to be kept to a minimum or under the radar. Some claimed this was
not so hard to do because most (nontechnical) managers were “clueless,” as
The Hacker Jargon File de" nition of “suit” makes sardonically clear:

n. 1. Ugly and uncomfortable “business clothing” often worn by non-
hackers. Invariably worn with a “tie,” a strangulation device that par-
tially cuts off the blood supply to the brain. It is thought that this ex-
plains much about the behavior of suit- wearers. Compare droid. 2. A
person who habitually wears suits, as distinct from a techie or hacker.
See loser, burble, management, Stupids, SNAFU principle, and brain-
damaged. English, by the way, is relatively kind; our Moscow corre-
spondent informs us that the corresponding idiom in Russian hacker
jargon is “sovok,” lit. a tool for grabbing garbage.14

Developers who were self- employed or working in a small tech company
that had few or no managers powered everything on free software, crediting
the success of the company to solid technology as well as the money saved
on software. As free software became acceptable in the corporate sphere,
geeks no longer had to hide their use of this software. A few told me during
interviews that they “started to put my Debian work on my resume.”

As these examples illustrate, for most developers (with the exception
of anticapitalist activist- geeks), acceptance of free software rarely led to
a wholesale political opposition to corporate producers of proprietary
software. Instead, developers used their experiences with free software to
develop a critical eye toward proprietary software " rms, targeting their
complaints at speci" c practices, such as abuse of intellectual property
law and the tendency to hide problems from customers. As one developer
put it starkly, “free software encourages active participation. Corporate
software encourages consumption.” Another one told me that he only
realized the extent to which corporations hid software problems from
their customers when he confronted the transparency of free software’s
bug reporting:

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 4 1

One of the things that you see with commercial, proprietary software
is that vendors don’t want to talk about bugs. They are pretty closed
mouth about it. It is hard to " nd out about it. They don’t want to ac-
knowledge it. When I started using Unix and started reading the man
pages, I was astounded. All these main pages had bug sections in them,
and where they explained the major bugs, it was an epiphany. People
would acknowledge and even explain their bugs.

Probably the single most important difference 2 agged in interviews was
that F/OSS software never could be “wrongfully” jailed under the dead-
weight of nondisclosure agreements and intellectual property law, never to
see the light of day— the tragic fate of much proprietary software if a project
is canceled. This closure violates the meritocratic tradition of recursively
feeding knowledge back to the community— something that is necessary to
secure ongoing technical production. Unlike proprietary software, F/OSS
always has a chance to live free “even if abandoned by the original author.”
As hacker Jeremiah explained in greater detail:

The important difference for me is whether I come away feeling that I
have created something of lasting intrinsic value or not. I’ve sometimes
come away from corporate development with that feeling, but it is a
lot more common with free software. I honestly don’t feel like there
are vast differences in areas like enjoyment gained in the program-
ming, stress level, levels of collaboration, and stuff like that. But most
often when I am done with corporate software, it’s dead, and when I
am done with free software, it is alive.

FR E E SO F T WA R E SP R E A D S

A nascent, circumscribed political sensibility that differentiated proprietary
software from F/OSS was fertilized by everyday geek news on Web- based
periodicals like Linux Weekly News and Web sites such as Slashdot, which
presented moral and political analyses alongside mainstream news features
as well as proli" c analyses about life as a coder. “Programmers started writ-
ing personally, intently, voluminously,” observes journalist Scott Rosenberg
(2007, 301), “pouring out their inspirations and frustrations, their insights
and tips and fears and dreams on Web sites and in blogs. It has been the
basis of if not a canon of great works of software, at least an informal litera-
ture around the day- to- day practice of programming.”

By the late 1990s, a number of academic lawyers had arrived on this
scene, specifying the issues in a legal though accessible language that re-
inforced the ones hackers were themselves formulating. The works and
opinions of these lawyers (whether derived from books, blogs, articles,
or speeches) have been particularly in2 uential, especially those of Lessig

4 2 C H A P T E R 1

(who I will give more attention to in the conclusion). As a small token of
this “lawyer effect,” I quote part of an email- based letter from a Debian
developer who wrote Lessig to express dismay over a legal ruling (and
its coverage), give his thanks, and explain his current contribution to the
politics of information freedom:

As a brief aside, two days ago I " nished reading The Future of Ideas.
 I was already familiar with much of the factual material in the

book (at least in broad strokes), but I have seldom put down a book
so in2 amed with rage. Rage at the copyright and telecommunications
cartels, not the author, of course. This evening I attended the Indiana
Civil Liberties Union’s holiday party, and the President offered to put
me on the ICLU’s special committee on “Civil Rights in the Informa-
tion Age.” In some small way I hope that I can contribute to averting
the bleak future you outline in your book.

I wanted to take this opportunity to thank you for authoring an ex-
tremely interesting book, and ask you or a colleague of yours to rebut
Prof. Hamilton’s FindLaw article.15

Lessig wrote back, encouraging him to pour his energies into " ghting those
who take a conservative and protective view of intellectual property law: “I
like your rage. Focus it. And direct it well and rightly against people who
think the only truth is in what our framers may have said. There is more.
There is what we say, now.”16

While many geeks were surprised to learn that high- quality software was
available with source code and began to re" ne their legal vocabulary, many
were as intrigued to " nd out that there was an identi" able community of
geeks who programmed not for the sake of pro" t but rather for the sake of
technology. One developer explained how through free software, he discov-
ered the existence of other like- minded geeks:

What really grabbed me was the community. That was what really
grabbed me, and you have to understand at the time, it was a com-
pletely foreign notion. [. . .] I had stumbled on this group of people
that were interested in the same things that I was interested in that
had, basically for no particular reason, built this thing, this operating
system, and it actually worked, and I could do my work in it and I had
not paid a dime for it; they did not ask anything of me when I down-
loaded it or used it.

No longer con" ned to their local area code and guided by a provocative
real- world example in Linux, hackers joined forces, cobbling various com-
munication and collaboration tools into rudimentary but highly effective
virtual guildlike workshops on the Internet. There they coded software ap-
plications as well as the tools that could facilitate their work. Developers
congregated on IRC for the daily pulse of interaction, mailing lists were

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 4 3

teeming with vibrant and at times contentious debates, while code reposito-
ries (where developers checked in and checked out source code plus tracked
changes) and bug- tracking software became the crucial back- end architec-
ture, allowing developers to manage and organize the complexity of long-
distance collaboration (Yuill 2008).

Speci" cally, the Linux kernel project, led by a Finnish programmer and
college student named Linus Torvalds, and initiated in 1991, was a tsunami
of inspiration, causing hackers and developers to follow suit. In 1993, Ian
Murdock, dissatis" ed with the available Linux distributions, emulated the
Linux kernel development model to start Debian, a distribution made “by
developers and for developers.”17 During an informal discussion at Debconf,
Murdock described the idea behind it:

[It] was to get more than one person involved. And the inspiration for
that was the Linux kernel. And for some reason the Linux kernel devel-
opment model seemed to work. You have one guy, Linus, coordinating
things, and random people would come and go and send patches and
test things, and it seemed to work, and I " gured, what the hell, let’s give
it a try and perhaps we can apply the same idea to this distribution.

He announced the Debian project in August 1993 on the Linux kernel
newsgroup, comp.os.linux. Immediately a handful of volunteers offered
their time, attention, and labor. By the end of the following year, the num-
ber of volunteers grew to a couple of dozen. As Murdock designed the
technical architecture to standardize a software package management sys-
tem, he took it on himself to theorize and conceptualize the nature of this
labor (like many other geeks who initiated virtual projects). Along with his
initial announcement, Murdock also published “The Debian Manifesto,”
where he extended and reformulated ideals in Stallman’s “GNU Mani-
festo,” addressing the pragmatic importance of transparency and distrib-
uted collaboration:

The Debian design process is open to ensure that the system is of the
highest quality and that it re2 ects the needs of the user community.
By involving others with a wide range of abilities and backgrounds,
Debian is able to be developed in a modular fashion. Its components
are of high quality because those with expertise in a certain area are
given the opportunity to construct or maintain the individual com-
ponents of Debian involving that area. Involving others also ensures
that valuable suggestions for improvement can be incorporated into
the distribution during its development; thus, a distribution is created
based on the needs and wants of the users rather than the needs and
wants of the constructor. It is very dif" cult for one individual or small
group to anticipate these needs and wants in advance without direct
input from others.18

4 4 C H A P T E R 1

On their project Web pages, which act as the initial portal to these projects,
most large- scale F/OSS projects (Gnome, Apache, KDE, Perl, Python, etc.)
showcased similar documents, articulating the virtues of collaboration and
transparency, and the pragmatic advantages of open- source development.
Even projects like Apache, which ideologically distance themselves from the
morality of free software, justifying openness in primarily utilitarian terms,
have detailed documents that explain the “open- source way.”19

By contributing to a project, hackers came into closer contact with
this discourse on the nature of their labor and the moral implications of
licenses— a vocabulary that they themselves helped to create and transform.
The growing uni" cation of technical experience and its representation be-
came notable on project news Web sites, mailing lists, blogs, books, and ar-
ticles; these texts provided developers with a rich set of ideas about creativ-
ity, expression, and individuality. Equipped with this language of freedom
and creativity, hackers brought coherence to the technical act of coding,
frequently conceptualizing it as an act of individual expression, as we see
here with Matthew:

Code is a form of expression. And for some people, well it is very hard
for a nontechie to think that way. [. . .] It is hard to teach the every-
man the value of free. [We] need to teach [that] free is a product of the
creativity of the programmer. They sat down and they put creativity
into it, and they put thought into it.

Programmers deliberately placed source code in the realm of freedom— a
space often closely linked to public and rational communication. “I think
this open communication,” Michael added, “is based on the freedom of the
source code. Members of the community are free to discuss the intricate
details of a program without fear of breaking any agreements.”

While developers enunciate a sophisticated language of freedom that
makes individual experiences of creation intelligible, their language
also elaborates on ideals that are more collectivist and populist in their
orientation— such as cooperation, community, and solidarity. While many
geeks have come to value free software as an avenue for self- expression or
because it can secure technical independence (as they can rely on themselves
to code an application just as they see " t), F/OSS is valued for providing a
communal space where people with shared interests can band together to
produce as they collectively see " t. When asked about the nature of this
sort of collaboration, Jeremiah responded that while it is “at times frustrat-
ing and maddening,” it is “most often rewarding. You learn really quickly
that there are a lot of really smart people in the project and that an idea is
always, always improved after they’ve all beat on it some.”

The effects of any public discourse are multiple and profound, as theo-
rists of publics have long maintained (Taylor 2004; Warner 2002). On one
level, the discourse of F/OSS works to represent and con" rm experience

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 4 5

(for after all, F/OSS development seems to work as well or, in some cases,
better than proprietary development), but on another level, by concretizing
experience into a rich and accessible format, it alters the nature of experi-
ence itself. With a set of “typi" cations” (Berger and Luckmann 1967, 31)
over the philosophical meaning of source code in place, hackers draw on
them to give meaning to their own actions, although these typi" cations can
and do change over time.

Public discourse is a vehicle through which hackers’ immediate experi-
ences with technology along with their virtual and nonvirtual interactions
with one another are culturally generalized. Their interactions are conceptu-
alized in terms of expression, transparency, ef" ciency, and freedom. Hackers
don’t solely derive meaning either through virtual interaction, though, or by
making, accessing, and extending public discourse. In- person interaction is
also a pervasive feature of their lifeworld, working to con" rm the validity of
circulating discourse. The single most important site of in- person sociality is
the hacker conference, the " nal topic of this chapter (see " gure 1.1).

Much has been made of the fact that hacking and F/OSS development
unfold in the ethereal space of bits and bytes. “Indeed, serious hackers,”
writes Manuel Castells (2001, 50), “primarily exist as hackers on- line.”
The substantial academic attention given to the virtual ways that hackers
produce technology is undoubtedly warranted and rich, and has advanced
our sociological understanding of labor and virtuality. But what this litera-
ture fails to substantially address (and sometimes even barely acknowledge)
is the existence of face- to- face interactions among these geeks, hackers,
and developers.

Perhaps this is so because much of this interaction seems utterly
unremarkable— the ordinary stuff of work and friendships. Many hackers,
for example, see each other with remarkable consistency, usually every day
at work, where they may share of" ce space and regularly eat lunch together.

Figure 1.1. Debconf1, Bourdeaux, France
Public domain, https://gallery.debconf.org/v/debconf1/roland/aap.jpg.html

(accessed July 29, 2011). Photo: Roland Bauerschmidt.

4 6 C H A P T E R 1

During downtime they will “geek out,” perhaps delving deep in conversa-
tions about technology, hacking on some code, or patching and recompiling
their Linux kernel just to try something out. On a given day, they might
dissect the latest round of the Recording Industry Association of America
lawsuits launched against person- to- person " le sharers and bemoan the
discovery of a particularly obnoxious security hole in the Linux kernel. If
they live in a location with a high density of geeks, generally big cities with
a thriving technology sector (for instance, Amsterdam, Montreal, Munich,
Bangalore, Boston, São Paulo, San Francisco, Austin, New York City, and
Sydney), face- to- face interactions are more common, especially since geeks
are often roommates, or interact through informal hacker associations, col-
lectives, and hackers spaces, now quite common in cities across Europe and
North America.20

We should not treat networked hacking as a displacement of or replace-
ment for physical interaction. These two modes silently but powerfully re-
inforce each other. Reading the latest technical, legal, or social news about
F/OSS on a Web news portal every morning, then posting the article link on
a mailing list (perhaps with a brief analysis), and discussing this news with
friends over lunch all bolster the validity as well as importance of such pub-
lic discourse. Public discourse grabs attention effectively not only because it
circulates pervasively but also because of the ways developers consistently
talk about and re2 ect on this discourse with each other in person.

Admittedly, hackers may not think of this type of daily or weekly in-
person interaction among friends and workmates as the locus of the com-
munity commonly referred to when speaking of computer hacking or F/OSS.
For many hackers, the locus of sociality is, as much of the literature argues,
networked and translocal. Composed of a vast, dispersed conglomeration
of people— close friends, acquaintances, and strangers— they see themselves
united by a fervent interest in and commitment to technology. They are con-
nected via the applications of the Internet that allow them to communicate
and build technologies.

Even if hackers have come to situate themselves in a vast global commu-
nications network, and imagine themselves in terms of networks and virtu-
ality, they also have increasingly done so by celebrating their translocality in
person. More than ever, hackers participate in and rely on a physical space
common to many types of social groups (such as academics, professionals,
hobbyists, activists, and consumers): the conference, which in hacker lingo
is usually designated by its shorthand: the con. Coming in multiple formats,
the number of hacker cons is astonishingly high, although it must be em-
phasized that their emergence is quite recent. Nonexistent before the early
1980s, the semiautonomously organized hacker con has proliferated most
dramatically during the last " fteen years, keeping pace with the seismic ex-
pansions of networked hacking and undeniably made possible by changing
economies of air travel.21

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 4 7

To adequately grapple with the nature of hacker sociality, whether virtual
or in person, we must also give due attention to these events, which constitute
an extraordinary dimension and, for some hackers, deeply meaningful aspect
of their lifeworld. Taking what is normally experienced prosaically over the
course of months or years, hackers collectively condense their lifeworld in
an environment where bodies, celebration, food, and drink exist in excess.
Interweaving hacking with bountiful play and constant consumption, the
con’s atmosphere is one of festive interactivity. As if making up for the nor-
mal lack of collective copresence, physical contiguity reaches a high- pitched
point.22 For a brief moment in time, the ordinary character of the hackers’
social world is ritually encased, engendering a profound appreciation as well
as awareness of their labor, friendships, events, and objects that often go un-
noticed due to their piecemeal, quotidian nature.

Evidence of this appreciation and awareness is everywhere marked, espe-
cially at the end of a conference, when participants say their good- byes and
" nd time to re2 ect on the con:

My " rst Debconf was probably the best single week of my entire life.
Yeah, it was that awesome. [. . .] I won’t talk about all the stuff that
happened, because that would just take too long. The most important
thing was that I got to see a number of old friends again and spend
more time with them in one run than ever before. That alone was re-
ally enormous for me. On top of that was the pleasure of " nally meet-
ing so many people in person. I met a few XSF members " nally, includ-
ing Julien Cristau, my partner in crime. [. . .] There was staying up
until 5 in the morning and stumbling back to the hostel in the dawn to
try to get some sleep before running back to the conference. The most
delightful thing about all this was that so many people I already knew
and loved were there, and everyone who I hadn’t met in person turned
out to be even better in real life. It was like a week of the purest joy.23

These types of intense, pleasurable emotional experiences and expressions
are abundant. They are deeply felt and often freely expressed, which brings
hackers not only a new appreciation of their world but also a new way of
actually experiencing their lifeworld.

TH E HA C K E R CO N A S L I F E W O R L D

Hacker cons occur infrequently but consistently. They recon" gure the re-
lationship between time, space, and persons, allow for a series of personal
transformations; and perhaps most signi" cantly, reinforce group solidarity.
All of these aspects of conferences make them ritual- like affairs (Collins
2004). While experiential disorder, license, intense bonding, and abandon
are common to them, cons tend to lack the types of reversals or inversions

4 8 C H A P T E R 1

found in traditionally identi" ed forms of ritual, which feature carnivalesque
play, rites of passages, resolution of social contradictions, or periods of se-
clusion (Bakhtin 1984; Gluckman 1963; Turner 1967).

Instead, hacker conferences are rituals of con" rmation, liberation, cel-
ebration, and especially reenchantment, where the quotidian affairs of life,
work, labor, and social interactions are ritualized, and thus experienced on
fundamentally different terms. Through a celebratory condensation, hack-
ers imbue their actions with new, revitalized, or ethically charged mean-
ings. Lifting life “out of its routine” (Bakhtin 1984, 273), hackers erect a
semistructured but highly 2 exible environment, in which the kinetic energy
is nothing short of irresistible and the interactivity is corporeal. These are
profound moments of cultural reenchantment whereby participants build
and share a heightened experience of each other.

Since there are “only hosts for there are no guests, no spectators, only par-
ticipants” (Bakhtin 1984, 249), most everyone arrives on an equal footing,
ready to contribute their part to what can only be characterized as a dizzy-
ing range of activities.24 These include formal talks, informal gatherings usu-
ally called “birds of a feather” (BOF) sessions, copious eating and drinking,
maybe dancing, hacking, gaming, sightseeing, and nonstop conversations.25
A little bit like a summer camp but without the rules, curfews, and annoying
counselors, many hacker cons are the quintessential hacker vacation— one
that often involves furiously exhausting work, a lack of sleep, and the need
to take a real break afterwards.

Though organizers spend many months of hard work planning these con-
ferences, the participants tend to experience them as evanescent. Because
very little beyond talks and a few planned events can be foreshadowed or
predicted in advance, the social atmosphere is pregnant with possibility.
Time takes on new qualities. Most especially, time in the ordinary and often
annoying sense of having to keep it is unimportant, as are many other de-
mands of day- to- day living. Participants can change the outcome of the con
itself by self- organizing, announcing new sessions, planning events, or buy-
ing a lot of alcohol, which when drunk, inadvertently derails other plans.
The con’s temporal potency resides in its sheer intensity, a feverish pace
of life in which freedom of expression, action, interactivity, and laughter
are let loose, and often channeled into securing the bonds behind the “in-
tense comradeship” (Turner 1969, 95) undoubtedly felt by many. Re2 exivity
and re2 ection are put on momentary hold, in favor of visceral experience.
Attention is given to the present moment, so much so that the totality of
the conference is usually recalled as startlingly unique, with its subsequent
representation— whether in text, photos, or video— a mere shadow lacking
the granularity and depth of what actually transpired.

But while its power seems to reside entirely in its temporal singularity, its
effects are multiple, far outlasting the actual con itself. By the end, due to
sleep deprivation, overconsumption, and interacting with peers, the hackers’

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 4 9

bodies and minds are usually left worn out, torn, and entirely devitalized.
Nonetheless, by witnessing others who share one’s passions and especially
by freely partaking in those passions, the hacking spirit is actually revital-
ized in the long run, after the postcon recovery needed to return to normal
life. Participants come to think of their relation to hacking or a particular
project in a different light. Above all, any doubts about one’s real connection
to virtual projects and relationships are replaced by an invigorated faith in
and commitment to this world.

It is clear that these events are signi" cant for hackers, who are able to
celebrate and appreciate their social world. For academics interested in the
relationships between virtual and nonvirtual domains, the con can be used to
pose important questions about how social actors like hackers, who are rou-
tinely immersed in networked digital media, might indigenously conceive of
the relationship between the screen and the physical space where bodies meet.
While hackers as a group rarely collectively theorize the nature of virtual in-
teractivity, as academics are prone to do, the immense value these hackers
place on these face- to- face encounters points to how they imagine the nature
of and even limits to virtual interactivity. The hacker conference is not only
a social drama that produces feelings of unity, as I will demonstrate below,
but can also be fruitfully approached as ethical and social commentary— a
native critique— that speaks to how hackers themselves imagine interaction.
By emphasizing so strongly the human interactivity of the conferences, hack-
ers are implicitly agreeing with the idea that virtuality, however meaningful,
cannot ever fully replace or mimic face- to- face sociality.

TH E SO C I A L ME TA B O L I S M O F A TY P I C A L DE V E L O P E R CO N

After hours of travel, hackers who tend to come from western Europe, Aus-
tralia, New Zealand, Latin America, the United States, and Canada (and a
handful from Asia) trickle in throughout the " rst day and night to the venue.26
The Debian developer conference, for example, is held every year in a new lo-
cation for over a week and brings together around four hundred developers
who work on maintaining this Linux distribution. Veteran attendees travel-
ing signi" cant distances arrive exhausted but enthusiastic, knowing what lies
ahead. For " rst timers, the anticipation may be a little more amorphous yet
no less signi" cant. The prospect of " nally meeting (actually in person) people
you often interact with, although typically only through the two- dimensional
medium of text, is thrilling. Many participants, unable to contain their ex-
citement, skip the " rst (and maybe second) night of sleep, spending it instead
in the company of peers, friends, alcohol, and of course computers.

No respectable hacker/developer con could be called such without the
ample presence of a robust network and hundreds of computers— the ma-
terial collagen indisputably connecting hackers together. Thin laptops,

5 0 C H A P T E R 1

chunky personal computers, reams of cable, fancy digital cameras, and
other assorted electronics equipment adorn the physical environment.
Animated by " ngers swiftly tapping away at the keyboards, computers
return the favor, animating faces in a pale blue hue. Most cons now host a
hacklab, a room " lled with long tables, nearly every inch occupied by com-
puters networked together, available for experimentation, testing, playing,
demonstrating, and so on. In the " rst few days, much of the technologi-
cal chatter centers on the dif" culties and solutions behind setting up the
network, which in the case of the Debconfs is usually commemorated in
detail in the " nal report:

The building itself had to be wired from the 2nd 2 oor to the basement,
and we ended up stringing approximately a kilometer of cable for
the network backbone. [. . .] Every room was interconnected with
redundant links. This turned out to be fortunate: we did have wiring
failures, but no one except the admins noticed and work continued
uninterrupted.27

Virtually communicating with participants as well as those unable to
attend, hackers continue to give due attention to their work and net-
worked interactivity even while in the presence of others, as we see in the
picture (" gure 1.3).

Since coordinating the hundreds, sometimes thousands, of hackers at a
con can be a bit challenging, geeks naturally turn to technology for help.
Even before the start of a conference, organizers erect an IRC channel, mail-
ing list, Web page, and wiki. Many geeks, who are coming from out of town,
change their cell plans, rent a cell phone, or get a new chip for their cell
phone to provide them with cellular service at the local rate. Some of the

Figure 1.2. Debconf10, New York
Photo: E. Gabriella Coleman.

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 5 1

many technical discussions are, naturally, about the latest mobile technolo-
gies and local mobile network. These tools are proli" cally used to locate
people, spontaneously coordinate new events, collect all sorts of informa-
tion, post slides, compile lists of where people are from, and " nd out where
to do laundry, along with other coordination tasks.

During talks, IRC becomes the high- tech peanut gallery. Hackers un-
abashedly discuss the presentations as they unfold, giving those not there
in person, but online, an often- humorous textual play- by- play. At the con,
these networked and virtual technologies exist in much the same way they
ordinarily do. Rarely used in isolation or to replace the “meat world,” they
augment interactivity (Hakken 1999; Miller and Slater 2001; Taylor 2006).
And hackers have grown adept at 2 uidly moving between them, cultivating
a peculiar incorporated competence— a hexis, or “durable manner of stand-
ing, speaking and thereby of feeling and thinking” (Bourdieu 1977, 93) used
to negotiate this movement. Even while typing away furiously, eyes scan var-
ious open windows on the computer, but ears are usually perked up, listen-
ing to the chatter and ready to contribute to the conversations unfolding in
the room. Here and there, material and virtual, bodies sit at an intersection,
processing bits and bytes as well as other physical bodies, who do the same.

Cons offer ample opportunity for individuals to present their own work
or new, 2 edging ideas to a larger audience. After laboring either in isolation
or with a handful of others in person, developers feel a rush of pride and
honor in presenting their work to a roomful of collaborators and peers who
are keen to learn more or lend a helping hand. Despite the fact that many
participants stay up until the crack of dawn, many still manage to put aside
biological imperatives to stay awake to attend the talks. Though many talks

Figure 1.3. HackNY, New York
Attribution- ShareAlike 2.0 Generic (CC BY- SA 2.0), https://secure.2 ickr.com/photos/

hackny/5684846071/ (accessed October 23, 2011). Photo: Elena Olivo.

5 2 C H A P T E R 1

are on technical matters, they usually span multiple topics, such as technol-
ogy, law, politics, and cooperative sociality, among many others.

While the experience of a con may ostensibly evade representation (or
strike participants as entirely 2 eeting), they are nonetheless important his-
torical conduits— perhaps one of the most signi" cant places for simultane-
ously experiencing the past, present, and future of a project. During cons,
participants make crucial decisions that may alter the character and future
course of the developer project. For example, at Debconf4, the few women
attending, spearheaded by the efforts of Erinn Clark, used the time and
energy afforded by an in- person meeting to initiate and organize Debian
Women Project, a Web site portal and IRC mailing list to encourage female
participation by visibly demonstrating the presence of women in the largely
male project.

Following the conference, one of the female Debian developers, Amaya
Rodrigo, posted a bug report calling for a Debian Women’s mailing list,
explaining the rationale in the following way:

From: Amaya Rodrigo Sastre <amaya@debian.org>
To: Debian Bug Tracking System <submit@bugs.debian.org>
Subject: Please create debian- women mailing list
Date: Tue, 01 Jun 2004 22:12:30 +0200
Package:lists.debian.org

Severity: normal

Out of a Debconf4 workshop the need has arisen for a mailing list
oriented to debating and coordinating the different ways to get a larger
female userbase. Thanks for your time :-).28

While decisions, such as the creation of Debian Women, address present
conditions to alter the future history of a project, cons also imbue projects
with a sense of history. Different generations of hackers intermix; older
ones recollect times past, letting the younger hackers know that things were
once quite different. At Debconf4, younger developers added their own sto-
ries about how they ended up working on Debian.29 Though information
may strike outsiders as mundane, for those involved in the project, learn-
ing how its social organization radically differed (“the New Maintainer
Process [NMP] for me was emailing Bruce Perens”) or " nding out where
key Debian servers were once housed (“under x’s desk in his Michigan
dorm room”) is nothing short of delectable and engaging. Murdock, who
attended his " rst Debconf in Porto Alegre, explained to a captivated audi-
ence, for instance, how he came to start the project— a treat for those who
knew little or nothing about Debian’s birth. Over days of conversation,
younger developers become acquainted with their project’s history, which

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 5 3

grows increasingly complicated each passing year. Younger developers, in
return, respond to stories of the past, adding their own accounts of how
they became involved in the project and what role they may have played in
changing its procedures. This back- and- forth storytelling, especially when
based on personal memories and project history, provides an apt exam-
ple of the “second- order stories” that Paul Ricoeur identi" es as part of an
intersubjective process of “exchange of memories.” These, he writes, “are
themselves intersections between numerous stories,” the effect of which is a
more pronounced form of entanglement through narrative (Ricoeur 1996,
6). Other conversations center on more somber matters, such as sharing
stories over one of the many lunches, dinners, and bar visits about a de-
veloper who has since passed on, like Joel “Espy” Klecker of the Debian
project, who died at the all- too- young age of twenty- one after " ghting an
illness that left him bedridden for many years.

For some developers, the awareness of a shared social commonwealth
takes on a decidedly moral character, leading some developers to reappraise
their virtual interactions and behavior with fellow developers. Take, say, this
memorable email sent during Debconf4, titled “Here at DebConf4,” where
one longtime developer, Texan Ean Schuessler, known for his argumentative
tone on emails, offered the following collective apology to the entire project:

Well folks, I’m here at Debconf4 and I’ve had some " rm feedback that
I am not as funny as I think I am. I knew this was the case in advance
but the irritation some people feel with the brand of my comedy has
given me pause.

I’ve argued that since I’m a volunteer that you all have to put up
with my attitude. I realized that attitude sucks. It sucks up your valuable
volunteer time reading the insulting, acidic emails I throw off when I am
frustrated with people. [. . .]

So I’m going to do something unprecedented. [. . .]
I would like to apologize, without reservation, for the accounting

2 amewar I started on spi/debian- private [a private email list for Debian
developers].30

Some developers who collaborate on a piece of software take the op-
portunity to sequester themselves for a couple of days and overcome some
particularly stubborn technical hurdle, thus accomplishing more in two
days than they had during the previous two months. To nonhackers, the
value of this in- person collaboration may seem odd when the collabora-
tors tend to work pretty much as they do at home— that is, alone on their
computers. This is a consequence of the single- user design and function of
computers. While at a con, collaborators might physically sit next to the
person they work with online (and so never see), and will frequently stop
and talk with them, or hammer out a problem over a meal, the actual act

5 4 C H A P T E R 1

of “working” on a project is determined by the object- necessitated state: in
a state of interacting with their computer, more often than not, alone. This
is occasionally mitigated by the shoulder- sur" ng and “check this out” stuff
that brings people together to look at the same screen, but typically for any
substantial work to get done, only one person can operate the machine at a
time. The time spent looking at someone else typing, making mistakes that
one wouldn’t make, solving a problem in a way that seems inef" cient, or
bumbling around unable to " x something makes people quickly gravitate
back to being in control of their own machine in a state of mental isolation.
The operative object necessities of a computer are particularly interesting
at a con, because the con fundamentally challenges yet never overcomes
completely these necessities.

What makes the shared sociality of projects so interesting is that people
do end up working together— in fact relying on each other— even though
their instrument usually demands only one operator. Take, for example, the
following developer, Martin Kraft, who wrote about running into “a wall”
when working on his software package, but was rescued by two develop-
ers who “dedicated their time to listen to my design and the problems and
helped me clear the mess up.”31 Or Tom Marble, who highlighted on his
blog “why attending these conferences is great,” for he got to “spend some
time discussing the future of Xorg with Debian’s maintainer, David Nusinow.

Figure 1.4. Debconf7, Edinburgh
Attribution 2.0 Generic (CC BY 2.0), http://www.2 ickr.com/photos/aigarius/569656268/

in/set-72157600344678016/ (accessed August 2, 2011). Photo: Aigars Mahinovs.

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 5 5

We talked about how to work around the infamous XCB bug with Java and
also about the future of X including OpenGL support.”32

Other hackers, who had hoped to get a signi" cant amount of work done,
entirely fail to do so, perhaps because socializing, sightseeing, nightclubs,
and the occasional impromptu concert (after " xing an old church organ)
prove a greater draw than late- night hacking.
Most hackers, however, intermix play with hacking, giving themselves am-
ple opportunity to see the sights, dance the dances, play the games, eat the
local cuisine, hit the parks and beaches, and stay put with computers on
their laps, hacking away next to others doing the same, generally into the
early morning.

During hacker cons, there is a semiotic play of profound sameness and
difference. Signs of sameness are everywhere. Most people are attached to
their computers, and share a common language of code, servers, protocols,
computer languages, architectures, LANs, wireless, kernels, man pages,
motherboards, network layer, " le sharing, stdout and stderr, Debian, and the
FSF. Many hackers wear geeky T- shirts. With each passing day, the semiotics
of sameness are enlivened, brought to a boiling point, as participants in-
creasingly become aware of the importance of these personal relations, this
form of labor, and F/OSS— in short, the totality of this technical lifeworld.

Within this sea of sameness, eddies and tides of difference are sculpted by
individual personalities, the unique existence of physical bodies in proximate
space, and political and cultural differences. Mixtures of different thick ac-
cents cascade over endless conversations. The melodic Italian competes with

Figure 1.5. Hackers on Planet Earth, New York
Attribution 2.0 Generic (CC BY 2.0), https://secure.2 ickr.com/photos/
ioerror/196443446/in/set-72157594211715252 (accessed August 2,

2011). Photo: Jacob Appelbaum.

5 6 C H A P T E R 1

the enchanting Portuguese. The German “Jaaaaaa” always carries a more
weighty af" rmation than the American English “yeah.” Everyone adopts
the basics (“please,” “yes,” “no,” and “thank you”) in the native language
of the home country hosting the event. Italian anarchists work alongside
US liberal democrats. Bodies sleeping, eating, and interacting make them-
selves known without asking, with the peculiar corporeal details— green
hair, a wheelchair, gray beards, red- 2 ushed cheeks, a large toothless smile,
the Texan drawl, a freckled face, and the paucity of females— all making a
lasting imprint, and captured in the thousands of photos that are taken and
posted on the Debconf gallery.33

By the end, the play of sameness and difference no longer can make their
mark, for bodies exist de2 ated, slightly corpselike. Unable to process signs
of life or even binary, some hackers experience a personal systems crash.

At the airport, awake but often a little dazed, participants engage in one
" nal conversation on technology, usually mixed with revisiting the notable
events that transpired at the con. Before the " nal boarding call is made, some
voice their commitment to return to next year’s Debconf, which is usually
already being planned by excited participants who want to ensure another
great (possibly better) event: “I’ll be back in Argentina unless something
goes seriously wrong,” one developer wrote on his blog after Debconf4.34
Another mentioned that “I look forward to attending additional DebConfs
in the future and encourage everyone to experience DebConf— they won’t
regret it!”35 For those who return annually, the hacker con takes on the par-
ticular ritual quality of a pilgrimage.

If immediacy and immersion set the tone of the con experience, as soon
as one leaves, a new experiential metabolism takes its place: one of height-
ened re2 exivity. As noted by Victor Turner (1986, 2; see also Turner 1967,
105), ritual allows for an acute form of apprehension in which social actors
re2 ect “upon themselves, upon the relations, actions, symbols, meanings,

Figure 1.6. Debconf3, Oslo
Public domain, https://gallery.debconf.org/v/debconf3/wolfgangklier/amk.jpg.html

(accessed August 2, 2011). Photo: Wolfgang Klier.

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 5 7

codes, roles, statuses, social structures, ethical and legal rules, and other so-
ciocultural components which make up their public ‘selves.’” After the sheer
intensity of action recedes and a feeling of nostalgia kicks in, hackers start
to re2 ect on the importance and meaning of the conference.

Small bits of this process are openly shared on mailing lists and blogs,
especially by con neophytes:

It was the " rst Debconf for me and it was very exciting and brought
many different views on software development and deployments, even
though I’m now hacking for over 12 years. [. . .]36

I don’t think I could ever have had a better " rst debconf experience.
I think it was as close to perfect as possible, everyone was friendly and
that was the most important thing. [. . .] There is only one thing that
I am sorry about and that is that I had to leave so soon.37

The best moment of the whole event was the formal dinner with the
rain, the mariachi, the mole, and the animations. I could never have
been so happy. That’s the way I see Debian: alive.38

For weeks afterward, the IRC channel remains highly active as people
who spent the week together reach out over virtual channels to try to re-
gain the social interactivity they have lost. Conversations detailing particu-
lar events work as inscription devices (Latour and Woolgar 1979), making
sure that such events are transformed into collective memories in order to
outlast the place and time of their occurrence. The duller (and for some, op-
pressive) atmosphere of the of" ce makes the con more wondrous, bringing
into sharper relief its creative, open potentials and fueling the strong desire
to return, yet again.

If cons cement group solidarity, they also usher in personal transforma-
tions. Liberated “from the prevailing point of view of the world [. . .] and
established truths, from cliches, from all that is humdrum and universally
accepted” (Bakhtin 1984, 24), people embark on decisions and actions that
they probably would not have considered otherwise. Some hackers decide
to formally apply to become a Debian developer, while longtime developers
decide not to quit the project— just yet. Others may tone down their mailing
list 2 aming after meeting the developers in person. Some fall in love during
the con, sometimes with another participant, and at other times with a local.
A few may quit their jobs working on proprietary software, feeling that if oth-
ers can make a living from free software, they ought to be able do so as well.

CO N C L U S I O N

The hacker con is a condensed, weeklong performance of a lifeworld that
hackers usually build over decades of experiences and interactions con-
nected to various media, institutions, and objects. And as long as a hacker
continues to connect to others via IRC, submits patches to open- source

5 8 C H A P T E R 1

projects, reads about their technical interests on Web sites, argues with their
buddies over the best- damn text editor in the world (Emacs), layers of ex-
periential sedimentation are added to their lifeworld. Like a large geologic
rock formation, a lifeworld has detectable repetitions, but it clearly exhibits
patterns of change. In one era, hackers connected with others through BBSs;
now they have transitioned into a larger space of interactivity, tweaking
the Internet technology that, as Chris Kelty (2005, 2008) has argued, is the
regular basis for their association.

In the last decade, the participants in and content of the hacker public
have dramatically expanded and diversi" ed (Jordan 2008; Coleman and
Golub 2008). Over blogs and at conferences, many geeks engage in a discus-
sion with lawyers and media activists about a range of legal as well as tech-
nical topics concerning the future of net neutrality, the digital commons, and
the expansion of copyright into new domains of production. A day rarely
passes without hackers creating or reading the publicly circulating discourse
that, in text, represents this lifeworld, otherwise experienced in embodied
interactions, maniacal sprints of coding, and laughter poured over the lat-
est Dilbert, xkcd cartoon, or Strongbad video at work. Insigni" cant as each
of these moments may be, taken together, they become the remarkable and
powerful undercurrent that sustains a shared world.

Figure 1.7. Debconf7, Group photo, Edinburgh
Attribution- NonCommercial- ShareAlike 2.0 Generic (CC BY- NC- SA 2.0), https://

secure.2 ickr.com/photos/aigarius/591734159/in/set-72157600344678016/
(accessed August 2, 2011). Photo: Aigars Mahinovs.

T H E L I F E O F A F R E E S O F T WA R E H AC K E R 5 9

There are lines of continuity and discontinuity with times past. Hackers
today are still tweaking and building technology like they did as children on
their " rst beloved computer (the Apple IIe, Sinclair, or Atari), but now they
are equipped with more technical know- how, their computer’s cpu is vastly
more powerful, their online interactions are more frequent and variegated,
and they have created and are always creating new lingo. Even though their
technical lives have become more public, given that so many mailing list
discussions are accessible to all after a simple search query, hackers’ social
and technical production happens in the domestic and private space of the
home. Publicity in this case is often matched by the privacy of the room or
of" ce, where hackers labor during the day, in the evening, on the weekend,
and for some, all of these times. A lifeworld is situated within its historical
times, even if rarely experienced as anything other than prosaic time, except
during rare moments like the con.

All conferences, despite their many differences, might be theoretically ap-
proached as the ritual underside of modern publics, in the sense theorized
by Michael Warner (2002) and Taylor (2004). While theorists of publics
have always noted that face- to- face interactions, such as meetings in salons,
are part of the architecture of the public sphere and publics (Habermas
1989), there has been little detailed attention given to the ways that physical
copresence might sustain and expand discursive forms of mediation. Per-
haps the circulation of discourse captivates people so strongly, and across
time and space, in part because of rare but socially profound and ritualistic
occasions, such as conferences, when members of some publics meet and
interact. Approaching the conference in terms of its ritual characteristics
may also demonstrate how social enchantment and moral solidarity, usu-
ally thought to play only a marginal role in the march of secular and liberal
modernity, is in fact central to its unfolding.

The relations between the conference and the public have affective, moral,
technical, economic, and political dimensions. Transportation technologies,
trains in times past and planes in times present, are as much a part of the
(often- unacknowledged) architecture of publics as are newspapers and the
Internet, for they transport bodies, normally connected by discourse, to
interact in an intense atmosphere for a short burst of time. It requires a
signi" cant amount of labor and money to both organize and attend these
events. The contexts of labor and organization— Is it affordable? Should it
be held in a downtown hotel or a small forest outside of Eugene, Oregon?
How is the conference advertised? Is it open to all or based on invitation?
What is the environmental impact of far- 2 ung global travel?— shape their
moral and political valence. Given that most conferences, even those that
are consciously made affordable, usually require long- distance travel, the
economics of conferences make them signi" cantly less accessible to certain
populations. The poor, the unemployed (or the overly employed who cannot
get time off to attend these events), the young, the chronically ill, and those

6 0 C H A P T E R 1

with disabilities often cannot attend. A political economy of the conference
can illuminate how members of a public are poised differentially to each
other because of their ability or inability to meet in person.

Just as a public has different instantiations, the same can be said of
the conference. If some publics, as Warner (2002, 119) perceptively ar-
gues, are counterpublics that maintain “at some level, conscious or not,
an awareness of [their] subordinate status,” similar typologies might help
us understand the social power and political force of a conference. While
most conferences, at some level, share similar features (presentations, talks,
and dinners), there are notable differences, especially as it concerns things
like sleeping and eating. The differences between the American Psychiatric
Association annual meetings, where doctors are dressed in suits and mill
about during the day at San Francisco’s Moscone Center, retiring individu-
ally in the evening to a luxury San Francisco high- rise hotel after a nice
dinner, and the outdoor festival held by European hackers, where bod-
ies are clothed in T- shirts and shorts (if that), and many participants can
be found sleeping together under the stars, are dif" cult to deny. Although
many hackers " nd themselves in well- paid jobs (like doctors), they are cog-
nizant of the controversial politics surrounding the term hacker— a name
many take on willingly. The cultural ethos and class of a group is inscribed
in where they are willing to meet, what they are willing to do with their
bodies, what they are willing to do with each other, and what they are will-
ing to express during and after these conferences.

Despite the differences in their moral economy, conferences tend to be the
basis for intense social solidarity that sustain relationships among people
who are otherwise scattered across vast distances. For hackers, given the
" erce celebration of some of their cons, these gatherings feel entropic. They
experience a cathartic release of laughter and pleasure, in which the daily
rhythms and trouble of life can be set aside. Yet these events work against
entropy, sustaining unity while also engendering new possibilities.

Sometimes, as one sits at their computer, coding feverishly for a project,
thousands of miles away from some of their closest friends and interlocu-
tors, one has to wonder, “Does this matter to others in the same way as
it does to me? In what ways does this matter?” And more than any other
event, the hacker conference answers such questions with lucidity and clar-
ity. During the con, hackers see themselves. They are collectively performing
a world that is an outgrowth of their practices, quotidian daily life, and
deepest passions. The con powerfully states that this world, which is usu-
ally felt in unremarkable terms, is as important to others as it is to each
hacker— a clear af" rmation of the intersubjective basis by which we can
conceptually posit any sort of lifeworld.

C H A P T E R 2

A Tale of Two Legal Regimes

••

It was the best of times, it was the worst of times; it was the age of
wisdom, it was the age of foolishness; [. . .] it was the season of
Light, it was the season of Darkness; it was the spring of hope, it

was the winter of despair.
— Charles Dickens, A Tale of Two Cities

In 1981, journalist Tracy Kidder published The Soul of a New Machine,
which earned a Pulitzer Prize for its incisive commentary on the height-

ened commercial turn in computing during the late 1970s and early 1980s.
The book ends pessimistically with a programmer lamenting how managers
at large computer " rms robbed the “soul” of computing away from their
makers: “It was a different game now. Clearly, the machine no longer be-
longed to its makers” (Kidder 1981, 291).

In 1984, a few years after the Soul of a New Machine hit bookstores,
Stallman also spoke of the soulless state of computing when he lamented
the tragic end to hacking in starkly cultural terms: “I am the last survivor
of a dead culture. And I don’t really belong in the world anymore. And in
some ways I feel like I ought to be dead,” Stallman said (quoted in Levy
1984, 427). Just when a handful of scholars and journalists " rst began to
document the cultural mores of this subculture (Kidder 1981; Levy 1984;
Turkle 1984; Weizenbaum 1976), Stallman declared its death, blaming it on
the cloistering of source code.

While Stallman and others may have accurately described some of the
economic and legal conditions transforming programming and hacking in
the 1980s, hacking never actually died. Contrary to Stallman’s predictions,
but in part because of his actions, hacking did not simply survive; it 2 our-
ished, experiencing what we might even portray as a cultural renaissance
whose de" ning feature is the control over the hackers’ means of production:
software and source code. Between Stallman’s dramatic declaration of the

6 2 C H A P T E R 2

death of hacking and its current worldwide vibrancy thus lies a palpable
irony about the unexpected outcomes that mark social life, political action,
and broader historical transformations.

The fact that these dire speculations and predictions turned out to be spec-
tacularly false is more remarkable given what has transpired in the realm
of intellectual property law in the last thirty years. Free software hackers
and enthusiasts have successfully secured a domain of legal autonomy for
software production during an era of such unprecedented transformations
in intellectual property law that critics have described it in ominous terms
like “information feudalism” (Drahos and Braithwaite 2002). Never before
has a single legal regime of copyrights and patents reigned supreme across
the globe, and yet never before in the short history of intellectual property
law have we been graced with such powerful alternatives and possibilities,
best represented by free software and the host of projects that have followed
directly in its wake.

This chapter, foremost meant to familiarize readers with the historical
rise of free software, will present the constitution of two competing legal
regimes, conceptualized here as two distinct trajectories that once existed
independently but have come into direct con2 ict, especially over the last
decade. The " rst trajectory pertains to free software’s maturity into a global
technolegal movement. The second trajectory covers the globalization of
intellectual property provisions so famously critiqued in the works of nu-
merous scholars (Benkler 2006; Boyle 1996; Coombe 1998; Lessig 1999,
2001a; Litman 2001; Vaidhyanathan 2001). These partly independent tra-
jectories intersected to become inseparable histories, with their horns locked
in a battle over the future of the very technologies (the Internet and personal
computer) that have enabled and facilitated the existence of both propri-
etary software " rms and the free software movement.

What follows is not a comprehensive history.1 Instead, this chapter starts
by discussing what is at stake in representing the con2 icts between two legal
regimes and then considers them in tandem. In so doing, I will emphasize
various unexpected and ironic outcomes as I elaborate a single development
that will continue to receive considerable treatment in the conclusion: the
cultivation, among hackers, of a well- developed legal consciousness.

A PO L I T I C S O F HO P E

In 1997, when I " rst learned about free software and the GPL, I found
myself excited (and puzzled) by the legal alternative it provided. Although
I ultimately became more interested in how the free software movement
changes the way we think about computer hacking, legal statutes, and prop-
erty rights, I remained invested in the politics of access, and vociferously
read works on this topic.2 But as time passed, I also grew dissatis" ed with

A TA L E O F T WO L E G A L R E G I M E S 6 3

many of the political analyses of free software, open access, and digital me-
dia, largely for either being too broad or limited in their assessments. Take,
for instance, Andrew Ross’s critique of free software. He quite correctly
characterizes free software as “artisanal”:

For the most part, labor- consciousness among FLOSS communities
[. . .] seems to rest on the con" dence of members that their expertise
will keep them on the upside of the technology curve that protects the
best and brightest from proletarianization. There is little to distinguish
this form of consciousness from the guild labor mentality of yore that
sought security in the protection of craft knowledge. (Ross 2006, 747)

He deems this insuf" cient, however, poetically stating: “Voices proclaiming
freedom in every direction, but justice in none” (ibid., 748). If Ross faults
free software for its supposed political myopia, others shine a more revolu-
tionary light on free software and related digital formations, treating them
as crucial nodes in a more democratic informational economy (Benkler
2006), and as allowing for novel forms of group association and production
(Shirky 2008). If one position demands purity and a broader political con-
sciousness from free software developers, the other position veers in the op-
posite direction: it has free software perform too much work, categorizing it
and other digital media as part of a second coming of democracy, shifting in
fundamental ways the social and economic fabric of society.

Analyses that either call for more political orientation or assume fun-
damental, widespread democratic effects tend to paper over the empirical
dynamics animating the political rise of free software. What follows is a
more nuanced account of not only the importance of free software but also
its historical constitution. While many free software hackers are driven by
the pleasures of hacking— chie2 y motivated by a desire to ensure their pro-
ductive freedom (and not by some commitment to justice, as Ross has cor-
rectly identi" ed)— the social element of this movement inadvertently offers
an education in relevant laws and statutes. It has produced a generation of
hackers that function as an army of amateur legal scholars. Over the last
number of years, many developers, armed with this legal consciousness, have
questioned or directly protested the so- called harmonization (i.e., tighten-
ing) of intellectual property law. To rephrase labor historian E. P. Thompson
(1963, 712), hackers have “learned to see their own lives as part of a gen-
eral history of con2 ict”— a consciousness not always steeped primarily in
class struggle, as was the case with the early industrialists/workers described
by Thompson, but instead tied to legal battles. Given the signi" cance of
the law in shaping and guiding political transformations, especially in the
transnational arena, this form of political consciousness far exceeds the
narrow ethics of craft that people like Ross stress. Legal consciousness and
especially legal knowledge are integral elements of almost any present- day
political program.

6 4 C H A P T E R 2

Despite the legal alternatives provided by free software, there is no sign
that the copyright industries have curtailed their demands for additional
restrictions. Yet as the domain of free software has grown and matured, it
has without doubt shifted the axis of intellectual property law, providing a
model that has inspired others to build similar endeavors in various " elds
stretching from journalism to science. Thus, one of the most profound po-
litical effects of free software has been to weaken the hegemonic status of
intellectual property law; copyright and patents now have company.

Nevertheless, the existence of free software (and the related though dis-
tinct digital practices, such as crowdsourcing) should not be mobilized to
make overblown assessments of the role of digital media formations in
changing the more general political makeup of society. No simple connec-
tion between democracy and social media can be sustained (Ginsburg 2008;
Hindman 2008; Lovink 2007; Morozov 2011; Rossiter 2007), nor is that
what I am advancing here.3 Instead, we should recognize the viable alterna-
tives in a moment when intellectual property law is itself undergoing rapid
transformation. When it comes to the politics of access, these are the best
and worst of times. Examining existing political possibilities, such as free
software, 2 ags the insight of Antonio Gramsci (1971, 175) about the nature
of radical critique: at its most powerful, it should be “armed with pessimism
of the intellect and optimism of the will.” One way to light the “spark of
hope in the past,” in the memorable words of Walter Benjamin (1969, 255),
is to bring into plain view the forms of con2 ict, alternatives, and struggles
not only of our past but also those in our midst. Now let us see how free
software came to provide an alternative to copyrights and patents.

1970– 1984: TH E CO M M O D I F I C AT I O N O F SO F T WA R E

During the 1960s, and for some of the 1970s, most computer " rms sold
hardware with software accompanying it, while legislators and courts had
yet to grant either patent or copyright protection for software. Prior to the
personal computer’s development, a few " rms started to sell stand- alone
software products, such as Informatics’ Mark IV, a pricey (thirty thousand
dollars) but popular " le management system that enabled businesses to com-
puterize their operations (Campbell- Kelly 2003). In 1969, the nascent soft-
ware industry received an inadvertent boost when the International Business
Machines Corporation (IBM) started to sell some software independently of
its hardware— a strategic move to avert an impending government antitrust
suit over bundling (Swedin and Ferro 2005).

Given the lack of legal restrictions on software, hackers and program-
mers in various university labs routinely read and modi" ed the computer
source code of software produced by others. Prior to the 1970s, most hack-
ers and programmers accessed computers— usually large mainframes— within

A TA L E O F T WO L E G A L R E G I M E S 6 5

universities, businesses, or the military, but this predicament would change
soon after an enthusiastic community of computer hobbyists mushroomed.
Throughout most of the 1970s, computers were a far cry from being mass-
produced or accessible, yet hobbyists, many of them clustered in high- tech
areas, followed the latest developments in computing and electronic tech-
nologies by regularly meeting in person at gatherings (Akera 2001; Ceruzzi
1998; Freiberger and Swaine 2000). The hobbyists of Silicon Valley’s Home-
brew Computer Club, in particular, played an important role in populariz-
ing what was the " rst commercially available home computer in the United
States, the Altair (Friedman 2005). A kit composed of a “big, empty box
with a CPU card and 256 bytes of memory” (Freiberger and Swaine 2000,
52), the Altair was manufactured by MITS, a two- person Albuquerque-
based company, which sold the bare- bones kit as a mail- order product.
Though the Altair lacked what we now see as the indispensable components
of a personal computer, notably the keyboard and video terminal, the hun-
dreds of Homebrew hobbyists " rst using it were thrilled that anything of
this technological sophistication was commercially available for individual,
personal use.

Also originally lacking any software, the Altair eventually included new
features, added by MITS, such as an interpreter of the BASIC computer lan-
guage written by two young programmers, Bill Gates and Paul Allen, who
dropped out of college to found “Micro- Soft” [sic]. When the pair got wind
of the fact that hobbyists had freely distributed copies of their BASIC inter-
preter at one of the Homebrew meetings, they were infuriated. In 1976, just
as companies " rst consistently began to assert copyrights over software,
Gates wrote a letter to the Homebrew hobbyists chastising them for, as he
saw it, stealing his software. As Gates (1976; emphasis added) maintained:

To me, the most critical thing in the hobby market right now is the
lack of good software courses, books and software itself. Without
good software and an owner who understands programming, a hobby
computer is wasted. Will quality software be written for the hobby
market? [. . .]The feedback we have gotten from the hundreds of peo-
ple who say they are using BASIC has all been positive. Two surprising
things are apparent, however, 1) Most of these “users” never bought
BASIC (less than 10% of all Altair owners have bought BASIC), and
2) The amount of royalties we have received from sales to hobbyists
makes the time spent on Altair BASIC worth less than $2 an hour.

Why is this? As the majority of hobbyists must be aware, most of
you steal your software. Hardware must be paid for, but software is
something to share. Who cares if the people who worked on it get paid?

Is this fair? One thing you don’t do by stealing software is get back
at MITS for some problem you may have had. MITS doesn’t make
money selling software. The royalty paid to us, the manual, the tape

6 6 C H A P T E R 2

and the overhead make it a break- even operation. One thing you do is
prevent good software from being written.

Although at the time Gates and Allen could not have foreseen just how
important copyrights and patents would become to secure their company’s
" nancial success, they were already justifying their position with one of the
most common utilitarian rationales for intellectual property law. For “good
software” to be written, they insisted, authors must be given a " nancial in-
centive in the form of copyrights, and therefore be given tight control over
the reproduction of software.

What started as a vibrant though niche hobbyist phenomenon had by
1977 turned into a “gold rush” personal computer business craze (Campbell-
Kelly 2003). As Gates built the most pro" table software " rm in the world,
securing pro" ts through the deft application of intellectual property law and
other business tactics, he would not have to worry much about “obsessive”
hobbyists for another twenty- two years. At the time, the threat from these
amateurs quickly receded as a handful of the Silicon Valley Homebrew hob-
byists became capital- seeking business entrepreneurs, starting a few of the
nearly two dozen small desktop- computing companies.

As the US software, personal computing, and telecommunications in-
dustries came to dominate national as well as international markets in
the late 1970s and early 1980s, Japan surpassed the United States in the
global automobile and steel markets, and did so in the context of a US
economy suffering from high trade de" cits and the outsourcing of manu-
facturing. Amid fears of losing ground to foreigners in a 2 agging economy,
US legislators launched an aggressive campaign to develop and fund the
high- tech and knowledge economic sector (Dickson 1988; Mowery 1999;
Sell 2003). In addition, under US president Ronald Reagan, the glimmer-
ings of what is now known as neoliberalism— an ideology of enlightened
sel" shness marshaled by a government catering to big business in the name
of laissez- faire economics— 2 ickered brightly within the US political and
economic landscape.

In this climate, legislators encountered little friction, much less outright
opposition, when proposing changes in intellectual property law and other
corporate- friendly policies. These initiatives included new laws that facili-
tated collaborations between private industry and educational institutions
(most famously through the Bayh- Dole Act), encouraged the industrial sup-
port of scienti" c research, and preserved defense funding for applied science
and technology (Boyle 1996; Dickson 1988; Jaffe 1999).

Changes in intellectual property law boosted the nascent software in-
dustry into a state of high pro" tability. Given the ease and extremely low
cost of software replication, changes in intellectual property law proved
crucial to protect source code, the “crown jewels” of the software indus-
try.4 In 1974, the Commission on New Technological Uses of Copyrighted

A TA L E O F T WO L E G A L R E G I M E S 6 7

Works (CONTU) deemed “computer programs, to the extent that they
embody an author’s original creation [. . .] [the] proper subject matter of
copyright.”5

Legislators took CONTUs recommendations and modi" ed the copy-
right statute in 1976 to include provisions for new technologies, prompting
computer- related companies to routinely assert copyrights over software.
The changes to the 1976 copyright statute were signi" cant on various fronts.
As noted by legal scholar Jessica Litman (2001, 54– 63), it was a statute of
“broad rights and narrow exceptions.”6 By 1980, legislators amended the
statute to of" cially include software, making statutory what CONTU had
recommended. Copyright applies to the “expressive” implementations of a
software application, and covers the program code along with any graphic
images and documentation.

In the late 1970s, patents were still off- limits. Courts considered soft-
ware algorithms (the underlying recipes or formulas that specify how parts
of a program do their job) to be mathematical processes, not machines or
mechanical devices, and thus un" t for patent protection. You could copy-
right the program’s source code, but you couldn’t patent what the code did.
According to Adam Jaffe, before 1980 the US Department of Justice, Fed-
eral Trade Commission, and the US federal courts were far more reluctant
than they are today to uphold disputed patents in court. Interpreting pat-
ents through antitrust law, courts and regulators often ruled against them,
concluding they were anticompetitive. This stance was “essentially reversed
in 1980” (Jaffe 1999, 3; see also Drahos and Braithwaite 2002; Sell 2003)
and culminated in a “historically unprecedented surge in patenting by U.S.
inventors” (Jaffe 1999, 1).7 By the mid- 1980s, courts ruled that new ob-
jects were eligible for patent protection. For example, starting in the 1980s,
courts deemed new materials, like modi" ed bacteria, genes, algorithms, and
eventually business methods, as suitable for patents. In the 1990s, judges
rede" ned software as a technical invention akin to physical machines (Jaffe
and Lerner 2004). Patents and copyrights, used together, now offer the soft-
ware industry multiple points of control over distinct components of indi-
vidual software programs.8

1984– 1991: HA C K I N G A N D IT S DI S C O N T E N T S

The rise of an independent and soon to be enormously pro" table software
industry based on the pervasive use of copyrights and, eventually, patents
came to reshape the social organization of hacking within the MIT arti" -
cial intelligence lab (as well as other similar communities) where Stallman
landed in 1971. Starting in the late 1970s, but becoming more common
in the 1980s, corporations started to deny university- based hackers access
to the source code to their corporate software, even if the hackers only

6 8 C H A P T E R 2

intended to use it for personal or noncommercial use. With this decrease in
access came a dramatic increase in business and professional opportunities
as countless " rms sought to hire talented programmers. In the particular
case of the MIT lab where Stallman worked, a number of computer com-
panies hired away a cohort of his peers, ultimately creating a rift between
the few who remained and those who left. These hackers working at new
software " rms were barred from collaborating on projects they had previ-
ously created together.

As these changes were under way, many hackers were unaware of— one
might even say oblivious to— the intricacies of copyright or patent law, as
the work of Kelty (2008) has keenly demonstrated. Many hackers, and Stall-
man in particular, nonetheless viewed these transformations and new legal
barriers as a personal affront as well as signi" cant cultural threat. Stallman
fundamentally viewed the sharing of source code as the bedrock supporting
the hacker practices of inquisitive tinkering and collaboration, and thus for
Stallman, the end of sharing amounted to the end of hacking.

The evisceration of his community drove Stallman into a " t of depressive
rage, leaving him “downtrodden and resigned,” as he described it in a docu-
mentary " lm (Florin 1986). His " rst response was maniacal retaliation, and
his fury was launched against the speci" c corporation he felt was person-
ally responsible for splintering his beloved hacker community: Symbolics.
In 1982, Stallman sequestered himself in near isolation; for the next two
years, he adopted the persona of a revenge programmer. He re- created the
changes made to the LISP OS by Symbolics, and then offered the altered
version to its competitor, Lisp Machine Incorporated.9 Stallman’s incarna-
tion as a revenge programmer, during which time he matched “the work of
over a dozen world- class hackers” (Levy 1984, 426), is now recognized as
legendary— indeed, nothing short of one of the greatest feats in program-
ming history.

In 1984, Stallman radically switched strategies. Devising a more person-
ally sustainable response with a far broader scope than revenge, he focused
on the politics of cultural survival (Coleman 1999). He resigned from the
MIT lab (in order to prevent MIT from claiming any proprietary rights over
his work) and began developing what he called “free software,” which for a
couple of years was not attached to any alternative licensing.

In 1985, Stallman founded the nonpro" t FSF, and along with a handful
of volunteers, concentrated on developing important technical tools and as-
sembling the components of a free OS. He chose to model it on the design of
Unix, which at the time was the most portable OS, meaning it could run on
the widest range of hardware. Stallman named his version of Unix GNU— a
recursive acronym for “GNU’s Not Unix.” This acronym cleverly designates
the difference between the FSF version and Unix, the popular AT&T pro-
prietary version. Unix was growing increasingly popular among geeks all
over the world, and as Kelty (2008) has shown, was already binding geeks
together in what he identi" es as a recursive public— a public formed by

A TA L E O F T WO L E G A L R E G I M E S 6 9

discussion, debate, and the ability to modify the conditions of its formation,
which in this case entailed creating and modifying software.

Stallman (1985, 30) formulated and presented his politics of resistance
along with his philosophical vision in “The GNU Manifesto,” originally
published in the then- popular electronics magazine Dr. Dobb’s Journal:

I consider that the golden rule requires that if I like a program I must
share it with other people who like it. Software sellers want to divide
the users and conquer them, making each user agree not to share with
others. I refuse to break solidarity with other users in this way. I can-
not in good conscience sign a nondisclosure agreement or a software
license agreement. For years I worked within the Arti" cial Intelligence
Lab to resist such tendencies and other inhospitalities, but eventually
they had gone too far: I could not remain in an institution where such
things are done for me against my will. So that I can continue to use
computers without dishonor, I have decided to put together a suf" cient
body of free software so that I will be able to get along without any
software that is not free.

During this period, Stallman and the FSF stayed " nancially a2 oat by sell-
ing FSF/GNU software on tape as well as informal in- kind support from the
MIT arti" cial intelligence lab. Unlike proprietary software, the FSF gave its
software users the permission to share, modify, and redistribute its source
code (the FSF also often sold applications at cheaper prices than its propri-
etary competitors), but this was based on an informal agreement instead
of a formal legal code. For Stallman, an early pressing concern was how
to release software in a way that future, modi" ed versions of FSF software
(that is, modi" ed from the original piece of software) would remain open
and accessible— a guarantee not necessarily provided by releasing software
into the public domain. It would take a major dispute over copyright and
his Emacs program (a text editor) for Stallman to actually turn to the law
for a solution.

Due to a fairly complicated multiyear controversy unfolding between
1983 and 1985 (whose details need not concern us here, but in which Stall-
man was accused of illegally copying source code into the version of Emacs
he was working on), the legal issues concerning patents, copyrights, and
public domain " rst and palpably became clear to software developers.10
Catalyzed by this controversy, Stallman started to use more formal legal
language in 1985 to protect free software, and by 1989, had crafted a clear
legal framework for free software in order to prevent the type of contro-
versy that had erupted over his Emacs work from recurring plus add a layer
of protection for free software and, crucially, user freedoms.

Stallman approached the law much like a hacker treats technology: as
a system that by virtue of being systemic and logical, is hackable. In other
words, he relied on the hacker technical tactic of clever reuse to imagina-
tively hack the law by creating the GNU GPL, a near inversion of copyright

7 0 C H A P T E R 2

law. The GPL is a license that while built on top of copyright law, reverses
traditional copyright principles.11 Instead of granting the owner the right
to restrict copies, the owner of a copyright grants the users the right to
copy and share programs. And the GPL goes further, projecting into future
versions: it behaves like a legal " rewall against the threat of future private
enclosure. Future versions of a distributed software program licensed under
the GNU GPL must remain under the same license, and hence can also be
used, shared, modi" ed, and distributed by other users. (This differs from
putting software in the public domain, since material released this way can
be subsequently incorporated into a new piece of work, which in turn can be
copyrighted).

By grafting his license on top of an already- existing system, Stallman
dramatically increased the chances that the GPL would be legally binding. It
is an instance of an ironic response to a system of powerful constraint, and
one directed with unmistakable (and creative) intention— and whose irony
is emphasized by its common descriptor, copyleft, signaling its relationship
to the very artifact, copyright, that it seeks to displace.

While Stallman felt that open access to knowledge would lead to more
ef" ciency in programming, his primary goal was freedom: he wanted to en-
gineer a legal structure to secure freedom, as he explained to Glyn Moody
(2001, 28), one of the early chroniclers of the free software movement:

The overall purpose [of the GPL] is to give the users freedom by giving
them free software they can use and to extend the boundaries of what
you can do with entirely free software as far as possible. Because the
idea of GNU is to make possible for people to do things with their com-
puters without accepting [the] domination of someone else. Without
letting some owners of software say, “I won’t let you understand how
this works; I’m going to keep you helplessly dependent on me and if
you share with your friends, I will call you a pirate and put you in jail.”

The creation of the FSF and especially the copyleft were intentional acts
of political resistance to halt the increasing proprietization of information.
Yet Stallman did not launch a radical politics against capitalism or frame his
vision in terms of social justice. Rather, he circumscribed his political aims,
limiting them to securing a space for the technocultural values of his passion
and lifeworld— computer hacking.

Many hackers and developers learned about the ethical and legal mes-
sage of free software early in its history, via the GPL or “GNU Manifesto,”
both of which circulated on Usenet message boards and often accompa-
nied pieces of free software. At the same time, many " rst- generation hack-
ers who used free software were frequently unaware, unmoved, or even
downright repelled by the ethical arguments presented by Stallman and
his dramatic manifesto. During interviews, for example, many spoke of
their negative or puzzled reaction to Stallman’s “quacky” and “strange”
ideas. One developer explained his ambivalent posture by saying, “I was a

A TA L E O F T WO L E G A L R E G I M E S 7 1

little confused. To me it [“The GNU Manifesto”] sounded socialistic and
ideological, a bit like [the] Jehovah’s Witness, something which will never
come to pass. At the time I disregarded it as a mad man’s dream. But I did
continue to use Emacs and GCC.”

Indeed, many of the early adopters were attracted to free software simply
because the applications were cheap and robust. Even better, the license
agreement granted permission to read the source code and modify it. The
majority of the hackers I interviewed, in other words, came to free software
at " rst merely for the sake of affordable, better- built technology and had
little knowledge about the existence, much less the workings, of intellectual
property law.

The year that Stallman resigned from MIT to write free software in his
battle to secure software freedom, 1984, proved to be a milestone for the
globalization of intellectual property laws as well. This was also the year
when various industries formed a slew of new trade associations, notably
the Intellectual Property Committee, International Intellectual Property Al-
liance, and Software Publishers Association, which sought to tighten intel-
lectual property laws domestically and export them internationally. Acting
largely as an umbrella group for other similar organizations, the Interna-
tional Intellectual Property Alliance in particular would come to play an
indispensable role as one of the most powerful copyright lobbyist organiza-
tions in the world. By the end of the 1980s, its membership included the
following eight trade associations: the Association of American Publishers,
American Film Marketing Association, Business Software Alliance (BSA),
Computer and Business Equipment Manufacturers Association, Informa-
tion Technology Association of America, Motion Picture Association of
America (MPAA), National Music Publishers Association, and Recording
Industry Association of America.

Throughout that year, these and other trade organizations lobbied on
Capitol Hill for amendments to a key US trade treaty, the General System of
Preferences. The treaty granted member countries the right to export certain
commodities tariff free to the United States, and these trade organizations
successfully pushed for General System of Preferences status to be contin-
gent on recognition of US intellectual property law and protection of the
goods covered under those laws. Concurrent with these changes, legislators
amended Section 301 of the US Trade Act, giving the president the power to
withdraw other trade bene" ts if the Of" ce of the United States Trade Repre-
sentative decided that a country was not providing “adequate and effective”
protection for US intellectual property (Drahos and Braithwaite 2002, 89).

1991– 1998: S I L E N T RE V O L U T I O N S

If two opposing legal trends emerged between 1984 and 1991, then the
years between 1991 and 1998 represent their global consolidation, which

7 2 C H A P T E R 2

occurred largely beneath the radar of public awareness and scrutiny. The
expanding use of desktop computers and networking at home, especially for
business purposes, guaranteed steady pro" ts for the software industry, and
transformed small " rms like Microsoft, Oracle, Novell, Cisco, and Adobe
into some of the most in2 uential as well as pro" table corporations world-
wide. In the early 1990s, even with healthy pro" ts, a lucrative market, and
well- established intellectual property regulations, the trade associations rep-
resenting the software industry and other sectors of the knowledge economy
were unsatis" ed with the legal state of affairs. Trade groups intensi" ed their
efforts to secure more changes in intellectual property law largely through
international treaties to better serve the interests of the corporations they
represented.

To achieve this, they integrated four new approaches into their arsenal:
they worked with federal law enforcement agencies to strike against “pi-
rates”; they pursued civil court remedies against copyright infringers; they
launched moral education campaigns about the evils of piracy (Gillespie
2009); and " nally, they pushed aggressively for the inclusion of intellectual
property provisions in the multilateral trade treaties of the 1990s, notably
the Trade- Related Aspects of Intellectual Property Rights (TRIPS).

In the United States, these tactics were assisted by new legislation signed
into law by President George Bush in October of 1992 that rede" ned a
class of copyright infringement cases in the United States as felonies. Be-
fore 1992, copyright infringers could face only civil suits and criminal
misdemeanor charges, but after the changes made to Title 18 of the US
Crimes and Criminal Procedure Code, a person who made more than ten
copies of a software program could receive up to two years in jail and
a $250,000 " ne.12 In making a class of copyright infringement a felony,
policymakers and intellectual property association representatives could
then argue for more inclusion of law enforcement agencies in the global
" ght against piracy.

On the international front, in 1994, after years of intense US- led lobby-
ing efforts, TRIPS became incorporated within the General Agreement on
Tariffs and Trade (GATT), and in 1995, was passed off to GATT’s more
robust replacement, the World Trade Organization. At the time, this treaty
represented a sweeping global change to intellectual property law, as it re-
quired all member nations to eventually adopt a single legal standard deriv-
ing largely from US legal principles. Among other provisions, some of the
most signi" cant were the following: patents had to ultimately be open to all
technological " elds (including software), the copyright term was modeled
on the US 1976 copyright statute, and nations could only grant narrowly
de" ned exemptions to copyright and patents. Along with accepting these
provisions, signatory nations had to commit to building the infrastructure
(patent and copyright of" ces along with criminal units) needed to uphold
and monitor intellectual property protection— a substantial " nancial invest-
ment for many developing nations.13

A TA L E O F T WO L E G A L R E G I M E S 7 3

These extensive legal changes, mandated by global regulatory institu-
tions, are an example of one of the central contradictions in the neoliberal
instantiation of free trade. Neoliberalism champions the rights of individu-
als, deems monopolies regressive, and relishes establishing a world free of
government regulation, so that goods, and especially capital, can cross na-
tional boundaries with little or no friction (Ong 2006). In practice, how-
ever, the actual instantiation of neoliberal free trade requires active state
intervention, regulation, and monopolies (Harvey 2005; Klein 2008). And
the global regulation of intellectual property law is perhaps one of the clear-
est instances of the contradictory underpinnings of neoliberal practice— a
monopoly mandated by trade associations as a global precondition for so-
called free trade.

On the national front, many changes were also afoot. In 1995, the Clin-
ton administration released a white paper, developed under Bruce Lehman,
the assistant secretary of commerce and commissioner of patents and trade-
marks, which agreed with the assessment made by the copyright industries
that their intellectual property holdings were under dire threat by new tech-
nologies. The ease of duplication and circulation enabled by new informa-
tion technologies, the copyright industries insisted, would prevent them
from releasing content digitally, thus retarding the Clinton administration’s
goal of creating a commercially robust national information superhighway.
Echoing Gate’s earlier admonishments against the Homebrew hobbyists, the
administration’s rationale was that the information superhighway “will not
be realized if the education, information, and entertainment protected by
intellectual property law are not protected effectively. Creators and other
owners of intellectual property rights will not be willing to put their inter-
ests at risk.”14 Although Congress did not pass the maximalist copyright
recommendations proposed in this white paper, it would implement similar
ones a few years later with the DMCA’s passage.

In this neoliberal climate, the message, politics, and artifacts produced by
Stallman were barely audible, as media theorist Thomas Streeter (2011, 156;
emphasis added) has aptly observed: “In a neoliberal world that was both
in love with high technology and that seemed completely stuck in the as-
sumption that innovation only sprung from the unfettered pursuit of pro" t,
Stallman’s approach was so different as to be almost invisible.” However
muted Stallman’s approach was in the early 1990s, free software would
soon experience massive growth, breaking away from its geeky enclave to
instigate a radical and fundamental rethinking of the assumptions that in
the 1990s still worked to marginalize Stallman’s “crazy” ideals.

While the increasing personal and business use of desktop computers
along with the commercialization of the Internet contributed to a diverse,
steady market for proprietary software " rms, cheaper desktops and more
affordable Internet access also lubricated the emergence of a novel form
of network hacking in ways that altered the public face and future direc-
tion of free software. Indeed, in 1991, just a year before President Bush

7 4 C H A P T E R 2

signed legislation to reclassify a class of copyright infringement as felonies,
Torvalds kicked off the development of the Linux kernel— a kernel being
the liaison between the hardware and software of a computer, and therefore
the core of the computer’s OS. At the time, Torvalds had no intention of
developing a project that would eventually help form the nucleus of a fully
operational and powerful OS— Linux— that could compete in the market
with propriety products. Nor was he motivated by a politics of resistance or
cultural survival, as was clearly Stallman’s impetus. Torvalds was simply try-
ing to get some help with a personal project that had captivated his attention.

Concurrent with the ongoing development of GNU applications, but in-
dependent of the FSF, Torvalds began to develop a basic kernel. He released
the source code on an Internet newsgroup, comp.os.minix, with the hope of
coaxing feedback from others and to allow other programmers to “play”
with it. His " rst posting to the minix newsgroup on August 25, 1991, when
he announced his project, re2 ects his initially humble intentions (which he
contrasted with the FSF GNU project): “I’m doing a (free) operating system
(just a hobby, won’t be big and professional like gnu). This has been brew-
ing since april, and is starting to get ready. I’d like any feedback on things
people like/dislike in minix, as my OS resembles it somewhat.” At the end of
this message, he predicts, incorrectly, that the OS “probably never will sup-
port anything other than AT- harddisks, as that’s all I have :).”15 Given just
how common Linux is today, Torvalds’s statement is famous among F/OSS
developers for its historical irony.

Yet a kernel, on its own, is a far cry from a functional OS. Since Stall-
man’s GNU project had already made many components required for an
OS, but had not yet developed a fully operational kernel, Torvalds decided
to integrate GNU’s copylefted software applications and components with
his kernel. This decision would prove crucial; it required Torvalds to license
Linux under the GNU GPL, and assured that the Linux source code would
remain accessible throughout its many future modi" cations and versions.
In a 1994 interview, Torvalds remarked that choosing the GPL license was
“one of the very best design decisions I ever did, along with accepting code
that was copyrighted by other holders (under the same copyright condi-
tions, of course).”16 Pairing the GNU project with Linux was also a marriage
between the purely technical motivations of Torvalds and the philosophical,
political motivations of Stallman— a marriage that would come to see some
tense moments in the future.

Indeed, Stallman was not known for his deft leadership skills, while Tor-
valds’s was to become well known for his open and effective style of leader-
ship. Stallman was foremost a political crusader, attempting to salvage what
he saw as the withering away of a culture; Torvalds was a " erce techni-
cal pragmatist, embodying a no- frills sensibility commonly championed by
many hackers. In marked contrast to Stallman, who tightly controlled the
development of FSF software, Torvalds was keen to receive any feedback

A TA L E O F T WO L E G A L R E G I M E S 7 5

from peers through newsgroups, where programmers could contribute bug
" xes and improvements that, if deemed worthwhile by Torvalds (who be-
came known as the project’s “benevolent dictator”), would be incorporated
into new versions of the Linux kernel. Unlike earlier generations of hack-
ers, Torvalds could now do a signi" cant amount of work from the comforts
of home (thanks to the personal computer and an Internet connection), and
in the process of developing the new kernel, he became a skillful leader,
coordinating the contributions of geographically dispersed developers over
the Internet.

The Linux kernel development project helped usher in a new era of net-
worked hacking, in which project leadership validates its status as much
through its ability to evaluate and coordinate contributions from others as
through the leaders’ own technical prowess. This mature form of networked
hacking differed in at least three respects from previous instances of hacker
collaboration: production was not af" liated solely with a single institution;
production occurred largely independent of market pressures and conditions;
and contributions, from previously unknown third parties, were encouraged
and, if deemed technically helpful, accepted. Through this experimentation,
hackers would ultimately produce software applications robust enough to
compete with proprietary software in the market, although few knew this
at the time.

Before the advent of Linux, the idea that complicated software systems
could be produced by geographically dispersed hackers was largely dispar-
aged (Raymond 1999). While it would be an exaggeration to claim that
long- distance collaboration between programmers was nonexistent prior to
the Linux project, its pace was slow, its scale was contained, and its effects
were often piecemeal, especially since such collective laboring had required
sending tapes over postal mail.17 In this period, the FSF had already released
a number of widely used and technically respected software tools and ap-
plications, based on the integrated work of many programmers.

Linux was, even if not entirely novel, certainly game changing, paving
the way for others. In the ensuing decade, some of the biggest names in free
software— Apache, GNOME, and KDE— got their start functioning and
operating not in the style of the FSF but instead following the example set
by Torvalds. Linux initiated a global network of associations composed of
hackers who, over time, came to not only identify and alter the principles
of freedom " rst enshrined by Stallman but also shift the material practice
of collaborative hacking. The pragmatic and ethical hallmarks of hacking—
innovation, creativity, collaboration, a commitment to openness, and imagi-
native problem solving— that Stallman established as a bulwark against pro-
prietization became the basis of long- distance free software development.

This emergence was not consciously engineered by Torvalds but rather
was realized through the open vicissitudes of practical experimentation
and action. “It is in the nature of beginning that something new is started,”

7 6 C H A P T E R 2

writes Hannah Arendt (1998, 157), “which cannot be expected from what-
ever may have happened before. This character of startling unexpectedness
is inherent in all beginnings.” What Arendt conveys is that because at some
level the present is always in the process of becoming, we live in a temporal
state with some degree of elasticity and underdetermination that allows for
an experimental engagement with the world. Much of the early history of
free software existed in just such a temporal state of 2 exibility, demanding a
certain level of skeptical and open experimentation on the part of develop-
ers and hackers. Stallman’s intentional politics of resistance, however crucial
to the viability of software freedom as a mode of legal production, was
incomplete without the participation of social actors also willing to openly
experiment with new possibilities whose future success was up in the air.

Legal and technical groundwork were of course central to this experi-
mentation. Notably the GPL, commonly referred to as the “Constitution”
of free software, and similar licenses ensured that source code would always
remain available. The availability of the personal computer, networking,
and other key technologies materially enabled a sustainable form of virtual
collaboration.

An additional element fueling the early development of free software as
a collaborative practice was the technical fact that most applications were
centered on the Unix OS architecture. Unix is considered one of the most
technically in2 uential OSs of all time because of its philosophical elegance
and 2 exible functionality. Since its release in 1969 by Bell Laboratories, it
has elicited a dedicated and passionate following among geeks around the
world, especially at universities, where it was and still is used for teaching
purposes (Kelty 2008; Salus 1994). Until the arrival of Linux, hackers were
usually con" ned to using Unix at work or a university, because most ver-
sions rarely ran on desktop personal computers and the cost of most Unix
licenses ran high. Just as the hardware hobbyists of the 1970s were thrilled
at the arrival of the Altair for bringing computing one step closer to home,
hackers of the 1990s were excited that Linux brought their beloved Unix
architecture into the private sanctuary of their personal computer. Again,
domestic production helped fuel a public practice.

All of these elements— material objects, legal agreements, leadership
styles, and human practical experimentation— were signi" cant agents and
actors (Latour 1988) in the constitution of a robust sociotechnical move-
ment. Although collaboration had previously existed in the university hacker
community, it reached a new depth, breadth, and salience through net-
worked hacking, in the process recon" guring the environment within which
free software development could take place.

Despite this global turn, at this juncture in the early 1990s, the com-
mercial elements of free software were yet in their infancy. It was still the
grassroots period of free software, and the mood among developers was
akin to festive bewilderment. Although programmers and developers were
glad to have access to Unix- compatible free software for home use, many

A TA L E O F T WO L E G A L R E G I M E S 7 7

were surprised that hackers working virtually through a volunteer associa-
tion could produce reliable and stable software applications. Enthusiasts
and programmers spread the news about this “new wonder” on mailing
lists and IRC. Face- to- face encounters also steadily grew in importance. The
" rst Linux user group was established in Silicon Valley in 1995, the same
year that the " rst Linux- speci" c trade show and conference was launched by
an unincorporated student organization at North Carolina State University.

Starting in this grassroots period, entrepreneurs and geeks founded small
companies, like Red Hat, providing support services for free software ap-
plications, while professional print magazines, like Linux Journal, were pub-
lished for a diversifying technical community. Despite this initial turn to the
market, the mainstream press barely noticed this new mode of technological
production, while most managers at corporate " rms were either unaware
of the existence of free software or wholly uninterested in migrating to or
developing free software. Free software enthusiasts nevertheless sometimes
made the move themselves by installing free software applications at work,
but hiding this from “clueless” managers. As noted by Jon “maddog” Hall
(2000, 118), an early free software evangelist, most managers at various
technology companies would always respond “no” when asked if they used
Linux, while many of the technical people would respond “yes”— adding,
“but don’t tell our managers.”

Many developers con" rmed this dual life during my research interviews.
One Debian developer described it as living a bipolar, “Jekyll and Hyde”
existence. Although privately preferring free software, he was always a little
afraid that his boss might " nd out that multimillion- dollar deals were be-
ing transacted on software with no corporate backing or warranty. No one
knew at the time that in a mere few years, the commercial sector would
jubilantly embrace free software, even if a few things had to change, includ-
ing its name.

1998– 2004: TR I U M P H O F OP E N SO U R C E
A N D OM I N O U S DMCA

By 1998, the Silicon Valley tech boom was truly booming. Technology entre-
preneurs were amassing millions in stock options from in2 ated initial public
offerings fueled in part by techno- utopic articles in Wired and the New York
Times.18 Internet companies like DoubleClick, Star Media, and Ivillage, all
2 edgling star Silicon Valley " rms, were awash in venture capital funding and
feverish stock market investments. In the context of one of Silicon Valley’s
most pronounced tech booms, geeks continued to install free software serv-
ers and other applications in universities and, more than ever, companies,
including many Silicon Valley start- ups. Thus by 1997, the grassroots en-
thusiasm of free software had grown material roots in the corporate sphere.
Multiple Linux distributions— most famously Slackware, Debian, and Red

7 8 C H A P T E R 2

Hat— were under vigorous development, and newer software applications,
like Apache, were gaining signi" cant visibility and being used by high- pro" le
dot- coms like Amazon. Many of the backbone technologies of the Internet
were by this time powered by free software (BIND for the domain name
system, Sendmail for email, and Apache and Perl for the Web, for example).

The LinuxWorld trade show had grown considerably in size, while users
around the world were forming Linux user groups (and other free software
groups) in new locations. Geek news sites like the Web site Slashdot and
online periodical Linux Weekly News acted as virtual glue for an emerg-
ing public, publishing general- interest pieces on free software, along with
detailed discussions on the host of new legal questions prompted by the new
technologies. More and more developers found jobs that hired them to write
or maintain free software.

In August 1997, Linux " nally made the front cover of Wired. Torvalds
had garnered enough fame from his hobby to be hired by a Silicon Valley
hardware " rm (Transmeta). In 1998, a couple of computer science graduate
students at Stanford University released Google, a search engine powered
entirely by Linux. All this activity signaled that although free software was
still expanding through grassroots energy, hackers were clearly moving it
much closer into the orbit of high- tech capitalist entrepreneurialism. Amid
this trajectory, the last- ditch effort of one famous company, Netscape, at
economic survival and a name change would bring free software from the
geek underground out into the open, in full public view, and even on to the
trading 2 oor of the New York Stock Exchange.

In 1998, Netscape, one of the early great successes of the dot- com era,
was battling severe " nancial losses due to competition posed by Microsoft’s
Internet Explorer. In January 1998, the company announced a loss of $88.3
million and cut three hundred jobs (Kawamoto 1998). As part of an at-
tempt to remain in business, Netscape released the source code of its popu-
lar browser under an open- source license, causing waves in the mainstream
press for its breach of corporate intellectual property norms. Netscape thus
brought this new concept of intellectual property law— free software— into
the public limelight. To justify its heretical choice to shareholders and the
public, Netscape offered the following rationale: “This aggressive move will
enable Netscape to harness the creative power of thousands of program-
mers on the Internet by incorporating their best enhancements into future
versions of Netscape’s software.”19 The announcement introduced the idea
that perhaps free software could offer economic advantages to corporate
America, with the allure of free, “creative” labor constituting the support
for the argument.

During the same months when Netscape technology workers convinced
their management that a radical change in the company’s intellectual prop-
erty model might stave off economic demise, another group of geeks orga-
nized by an in2 uential tech industry publisher, Tim O’Reilly, was planning to
alter free software’s public image so that other corporations could follow in

A TA L E O F T WO L E G A L R E G I M E S 7 9

Netscape’s footsteps. The group wanted to present free software as a safe and
irresistible business opportunity, and felt that the name free software got in
the way. This collection of free software geeks, Silicon Valley entrepreneurs,
and enthusiasts met in April 1998 in Palo Alto, California, at the Freeware
Summit to discuss the future of free software. They were primarily interested
in its business potential. The summit conspicuously lacked Stallman.

In intentionally excluding Stallman from this semi- secret get- together,
certain participants were trying to sever the message of free software from
its intellectual progenitor. Though by this time the public, developers, and
hackers identi" ed free software beyond the efforts of a single individual,
Stallman was nevertheless still seen as its ideological mouthpiece, and his
message remained focused on software freedom. Some participants at the
Freeware Summit were concerned that Stallman’s personal idiosyncrasies,
uncompromising radicalism, and constant use of the terms free and free-
dom might send the corporate world a message of anticommercialism— or
worse, some variant of communism or socialism. Even though free software
licenses do not bar one from selling free software, the summit organizers
felt that Stallman’s conceptualization of free might deter investors. They
also pointed out that the term free software was confusing to the public— a
sentiment expressed even by many ideological supporters of free software,
since it so strongly suggests issues of price and not freedom.

The group solved this problem through a process of linguistic refram-
ing (Lakoff 2004), replacing the term free software with open source. They
wanted the word open to override the ethical messages and designate what
they were touting simply as a more ef" cient development methodology. They
knew, however, that creating a new image for open source would “require
marketing techniques (spin, image building, and re- branding)” (Raymond
1999, 211)— a branding effort that some of the participants were more than
willing to undertake. Eric Raymond, who had recently written what would
become an in2 uential article on free software, “The Cathedral and the Ba-
zaar,” took it on himself to become the mouthpiece and icon for this new
open- source marketing strategy.

Although Raymond’s goal was to bring free software into the business
world, like Stallman, he was also deeply engaged in the politics of cultural
revaluation (Coleman 1999). While Stallman felt that a certain type of com-
mercial incursion (in the form of intellectual property law) threatened the
values of hacker culture, Raymond wanted to bring open source to the
market to improve the hacker cultural experience. If hackers could gain a
respectable foothold among Fortune 500 companies, he argued, it would al-
low them to reap enough social capital so that they could escape a cultural
ghetto of marginalized nerdiness. While Raymond (1999, 211) described the
ghetto as “fairly comfortable [. . .] full of interesting friends,” it was still
“walled in by a vast and intangible barrier of prejudice inscribed ‘ONLY
FLAKES LIVE HERE.’” For Raymond, aligning hacking with the capitalist
spirit would allow hackers to accrue socially respectable forms of prestige.

8 0 C H A P T E R 2

Solely judging from the amount of media attention it received, the
open- source marketing campaign was a success. Mainstream journal-
ists complemented their ensemble of sensationalist articles on the Silicon
Valley miracle with tales about the wonders of open source. Engineers
and geeks working in corporations had actually accomplished much of
the silent grunt work that could, in certain respects, back up parts of
these stories. Learning the technical, legal, and social ropes of free and
open software, these technology workers taught their corporate managers
(whose interest in this novel concept had been piqued by the articles in
Forbes and Wired) about this enigmatic sociotechnical world or revealed
the fact they were already using this software. Geeks were more than
happy to " nally be public about their secret work life and explain to their
perplexed bosses why free software, which often came with no warranty
and no corporate technical support, was superior to the business default,
Microsoft. These moments are recollected with great pride as an early
triumph of F/OSS.

Gates, who had already dealt with “pesky” hobbyists in his youth, had to
respond to the product and messages of these impassioned volunteers. Early
in 1998, Gates publicly stated that Linux posed no competitive threat to
Microsoft. In an interview, he con" dently asserted that “popular newcom-
ers such as Linux pose no threat to Windows. Like a lot of products that
are free, you get a loyal following even though it’s small. I have never had a
customer mention Linux to me” (quoted in Lea 1999).

Despite Gates’s proclamations, top- level managers were writing anxious
internal memos about the threat posed by open source— memos that were
eventually leaked online by a Microsoft employee. They revealed that the
Redmond, California, giant was in fact eminently concerned by the “loyal
following”:

OSS poses a direct, short- term revenue platform threat to Microsoft,
particularly in server space. Additionally, the intrinsic parallelism and
free idea exchange in OSS has bene" ts that are not replicable with our
current licensing model and therefore present a long- term developer
mindshare threat.20

Referring to them as the “Halloween Documents” to commemorate the day
of their unauthorized release, Raymond provided extensive commentary on
the memos, which circulated on the Internet like wild" re. In the short his-
tory of F/OSS, this soap opera has become one of the most memorable and
in2 uential incidents, and has been received as one of the ultimate historical
ironies that many geeks savored. Since Gates’s famous 1976 letter to hobby-
ists is part of hacker cultural lore, it was doubly ironic to have his admon-
ishment against the Homebrew hobbyists— “One thing you do is prevent
good software from being written”— historically nulli" ed twenty- two years
later due to the action taken by hobbyists.

A TA L E O F T WO L E G A L R E G I M E S 8 1

While Netscape’s announcement provided a dose of credibility to an in-
formal hacker practice and its concomitant legal arrangements, everyone
knew Netscape was releasing the source code as a last- ditch effort to halt
further " nancial hemorrhaging. Netscape’s move was an experiment whose
outcome and effect on the future of open source was entirely uncertain. But
having Microsoft, one of the largest, most " nancially secure, and certainly
most in2 uential software " rms in the world, acknowledge the viability of
F/OSS (as both a method and product) sent the clearest possible message to
the public: open source was to be taken seriously.

For the Freeware Summit participants who had recently launched an
open- source marketing campaign to bring commercial legitimacy to this
fringe practice, the leak’s timing was a blessing. The surprising yet sweetly
vindicating Halloween documents sealed the idea that open source was
nothing short of “the real thing” and could make waves in the market. The
era of festive bewilderment was over, and it was replaced by a period of rev-
elry as the dot- com boom also fueled the newfound discovery and celebra-
tion of the open- source phenomenon.

Although Microsoft stated in its internal memos that it would not lead
a campaign of fear, uncertainty, and doubt against open- source products, it
feverishly implemented the well- worn corporate tactic of disinformation,
using everything in the company’s powerful marketing arsenal to discredit
the reliability of Linux. Launching a direct attack against the bulwark of
F/OSS, the GPL, Microsoft representatives described this legal agreement
with three of the most feared words in the United States: cancer, communism,
and un- American. In 2001 during a media interview, Microsoft’s CEO, Steve
Ballmer, stated unabashedly, “Linux is a cancer that attaches itself in an intel-
lectual property sense to everything it touches” (quoted in Greene 2001). Even
amid various advertising campaigns, none of these words ever stuck.

Microsoft’s early assaults against Linux only fueled an existing anti-
Microsoft sentiment among developers. Yet not everyone in the trenches of the
free software community was enthused by the newfound commercial popular-
ity of open- source software. Not surprisingly, Stallman was deeply concerned
and felt that he had lost control over the crucial message of freedom— a sen-
timent he expressed in a 1998 interview with a sympathetic Bay Area re-
porter. Stallman remarked that “certain people are trying to rewrite history,”
concluding that he might be denied his “place in the movement” (quoted in
Leonard 1998). He was afraid that the GNU project’s message of freedom
and sharing would get forever squashed, buried under the commercial pros-
pecting characteristic of the dot- com boom.

By early 1999, not a month passed without some well- known company—
Dell, IBM, Sun, or Oracle— issuing a press release about its involvement in
or support of open source. By 2000, corporations released these statements
weekly. Instead of community- run free software projects, commercial ven-
tures became the most visible players at the Linux trade shows, and began to

8 2 C H A P T E R 2

hire some of the most active developers from leading projects like the Linux
kernel and Apache. Even though much of free software (from compilers to
Web servers) was stable, mature, and usable before the commercial incur-
sion, the support and services provided by corporate dollars signi" cantly
accelerated development and improved the quality of certain products.

Although Stallman was not opposed to the presence of the market in
free software (he repeatedly stated that he hoped programmers would be
paid for their labor), he was concerned that as Linux became a high- pro" le
commercial product, the FSF’s contributions would become barely audible,
marginalizing the ethical message of free software. While arguing with other
developers on the Linux kernel mailing list about the need to include the
name GNU within Linux (since the OS, after all, included many pieces of
GNU software), Stallman again offered a dire prognosis about the future of
free software: “If this thread is annoying, please imagine what it is like to
see an idealistic project stymied and made ineffective, because people don’t
usually give it the credit for what it has done. If you’re an idealist like me,
that can ruin your whole decade.”21

At this time, it truly did seem as if the idealism of free software was per-
haps a thing of the past. The corporate discourse of technical ef" ciency and
market power was growing to be a Goliath in comparison to the eccentric
“David” (Stallman) who initiated the idea and politics of free software. I
myself wondered how the message coming out of a small nonpro" t in Cam-
bridge, Massachusetts, could ever compete with corporate behemoths like
IBM that had million- dollar advertising campaigns at their disposal. Many
people were coming to learn about open source through slick advertising
campaigns (in the form of print ads, television commercials, and even spray-
painted images on city streets) that only corporate giants could afford.

The corporate acceptance of Linux and open source, however, did not
completely eliminate the idealistic elements of free software production. In
fact, the popularity of Linux among hackers, the ability of hundreds and
eventually thousands of programmers to contribute to it (and other soft-
ware projects), and its success in the commercial sphere had the effect of
rendering visible the underlying ethics of free software to a much larger
audience than the FSF and Stallman had ever reached.22 By turning Linux
and open source into household names, many more people learned about
not just open source but also the ethical foundations— sharing, freedom,
and collaboration— of free software production. In other words, historical
outcomes proved to be more unpredictable, complex, and ultimately ironic
than anyone could have ever imagined.

As Linux and open source gained more visibility in the public sphere,
corporations were not the only entities and actors to learn about as well as
embrace F/OSS. In2 uential academic lawyers like James Boyle, Yochai Ben-
kler, and Lawrence Lessig, who were all concerned with diminishing public
access to knowledge, were studying the dynamics of F/OSS, and using them

A TA L E O F T WO L E G A L R E G I M E S 8 3

as the prime example to argue persuasively for alternatives and moderation
in intellectual property law. Debian, the free software project with the larg-
est number of members, had by this time committed to the idea of free soft-
ware, a morality enshrined in its Social Contract (a list of promises to the
F/OSS community) and Debian Free Software Guidelines (DFSG, clarifying
the legal meaning of freedom for the project). By 1998, people inspired by
the GPL had created similar licenses for other forms of content. Lessig in-
stitutionalized this expansion in 2002 in Creative Commons, a media- savvy
and well- respected nonpro" t that now provides a collection of alternative
copyright licenses. More and more grassroots F/OSS projects, most of them
small (one to " ve developers) and unfunded, were appearing. By 2000, there
were over twelve thousand documented F/OSS projects hosted on Source-
Forge, a widely used central repository for F/OSS programs.

Outside the sphere of F/OSS production, other Net enthusiasts and us-
ers were also deeply enmeshed in techniques of collaboration enabled by
the Internet and cheap computers. For example, seasoned political activists
who were part of the Independent Media Centers (IMC) " rst established in
1999, during the heat of the counterglobalization protests raging at the time
in many European and US cities, were posting news and photos on Web
sites powered by free software. Aware of the social and political implica-
tions of free software, some of these IMC organizers ideologically aligned
the meaning of free software with a radical political outlook (B. Coleman
2005; Pickard 2006; Milberry 2009). Among netizens, new tools like wikis
and blogs, many written as F/OSS, fueled the production of noncorporate-
controlled content during an unprecedented commercial intrusion into the
Internet— a trend that continues today, most famously with projects like
Wikipedia (Benkler 2006; Reagle 2010; Shirky 2008).

In short, F/OSS production was only one instance of a broader set of
changes taking place on the Internet, propped up by the idea that informa-
tion access is, if not a fundamental right, a noteworthy social good, and the
best conduit by which to foster collaboration and creativity. Free software
production was at this time the most dynamic, ethically coherent, and vi-
brant example of the new social phenomena, for it had developed into a full-
2 edged movement composed of a technical methodology, legal agreements,
and a sophisticated ethical philosophy. Open source, as Steven Weber (2004,
7) claims, is “one of the most prominent indigenous political statements of
the digital world.” As such, F/OSS has attained a robust sociopolitical life
outside the digital world as a touchstone for like- minded projects in art, law,
and journalism— some notable illustrations being MIT’s OpenCourseWare
Project, School Forge, and the BBC’s decision to open its archives under a
Creative Commons license.

Still, all parties did not celebrate the forms of information access, open
content, and collaboration facilitated by new information technologies. Ma-
jor corporate copyright owners were aghast at the promiscuous " le sharing

8 4 C H A P T E R 2

enabled by a broadband connection, a home desktop computer, and peer- to-
peer systems. As these technologies became more accessible, the copyright
owners feared " le sharing and piracy would become a routine part of every-
day life, thereby cutting into their pro" t margins— although these fears were
curiously at times conceptualized not solely in economic terms but also in
cultural and moral ones. The following statement made at the turn of the
twenty- " rst century by Richard Parsons, at the time the president of Time
Warner, became a well- known declaration about the cultural threat posed
by weak intellectual property protections:

This is a profound moment historically. This isn’t just about a bunch
of kids stealing music. It’s about an assault on everything that consti-
tutes the cultural expression of our society. If we fail to protect and
preserve our intellectual property system, the culture will atrophy. And
corporations won’t be the only ones hurt. Artists will have no incen-
tive to create. Worst- case scenario: The country will end up in a sort
of cultural Dark Ages.23

The copyright industries told Congress that their economic future in the
new millennium utterly depended on a drastic revision of copyright law
(Vaidhyanathan 2001). Congress listened. These industries successfully
pushed for a bill— the DMCA— that fundamentally rewrote intellectual
property law by granting copyright owners technological control over digi-
tized copyright material. The main thrust of the act, with a few narrowly
de" ned exceptions, is that it prohibits the circumvention of access and copy
control measures that publishers place on copyrighted work.

Exceeding the mandates in the 1996 World Intellectual Property Orga-
nization treaty on copyrights, the DMCA imposes severe criminal penalties
(a single offense can involve up to " ve years in prison and a $25,000 " ne)
against those who circumvent access control measures protecting copy-
righted material. The act steps even further into unprecedented legal terri-
tory: the DMCA also outlaws the distribution, traf" cking, and circulation
of any device with the potential to decrypt an access or copy control, even if
the device can be used for an entirely lawful purpose. Thus, along with mak-
ing the act of circumvention per se illegal, it bans any technology that can
potentially be used to circumvent an access control method. As noted per-
ceptively by one media scholar, the DMCA’s circumvention clause actually
makes the “Digital Millennium Copyright Act” a misnomer; it is an “Anti-
copyright act” (Vaidhyanathan 2004, 85), since the DMCA grants copyright
holders the right to “circumvent” the few restrictions built into copyright
law such as expiration terms, " rst sale, and fair use.

Hence, just as a swath of volunteers and a segment of the corporate
world embraced the open- source credo of access and openness, other cor-
porate players were relieved when President Bill Clinton signed maximalist
copyright principles into law with the DMCA on October 28, 1998. The
DMCA, signed only a week after the Sonny Bono Copyright Term Extension

A TA L E O F T WO L E G A L R E G I M E S 8 5

Act (which retroactively extended copyright an additional twenty years),
signaled a new era in which copyright owners would wield tremendous in-
2 uence over legislation.

The DMCA passed without much public awareness, much less any con-
troversy. Trade associations working on behalf of the entertainment and
copyright industries backed the act. During hearings, these associations
consistently claimed that unless copyright owners were given total control,
they would never digitize content. Without the said protections, economic
growth would halt. The BSA was armed with unveri" able statistics to buoy
its stance, reporting that the eradication of piracy would add 430,000 jobs
in the United States, worth " ve billion dollars in wages (Benkler 1999, 423).

In 1999, after hackers released DeCSS (a short program used by Linux
enthusiasts to circumvent DVD access control), the MPAA sued various pro-
grammers and publishers for publishing this program. In Norway, one of its
authors, Jon Johansen, was arrested— although not under the DMCA (this
is described in greater detail in chapter 5). These events, and others that fol-
lowed, mark the moment when two legal trajectories " nally clashed.

In 2001, at Adobe’s urging, the FBI made its " rst arrest under the
DMCA— as mentioned earlier, the Russian programmer Sklyarov. Sklyarov
was arrested as he was leaving Defcon, where he had presented a paper on
a software application he helped code for his Russian " rm. It was a piece
of software deemed illegal under the DMCA. The US Of" ce of the Attorney
General charged Sklyarov with violating the DMCA for his role in develop-
ing the Advanced eBook Processor. As Sklyarov was whisked off to prison,
the FBI’s " rst arrest under the DMCA sent a chilling message to the other
" ve thousand hackers who attended Defcon in the heat of Las Vegas. The
industry was more than ready to follow through with extreme measures to
control the production of technology, which also meant controlling what
hackers did on their personal computers in the privacy of their homes. For
many hackers, this meant controlling thought itself.

Soon after the Sklyarov indictment, the BSA, satis" ed at a job well done,
released the following statement:

US prosecutors have now obtained the " rst indictment under the Digi-
tal Millennium Copyright Act, involving Elcomsoft, and its employee,
Dimitry Skylarov [sic]. This indictment under the DMCA is consistent
with the plain reading of the law and with Congress’s intention when
the law was drafted and enacted in 1998. Law enforcement actions
are critical to the BSA’s anti- piracy efforts, which resulted in over $11
billion in losses to the industry alone. The BSA has a productive his-
tory working with the Department of Justice on anti- piracy measures
and educating the public about software piracy. We look forward to
continuing efforts in this area.24

The copyright industry clearly found great comfort in using a law that
granted it a generous degree of technological control over digitized content

8 6 C H A P T E R 2

while outlawing a certain class of technologies. But the BSA and its peer as-
sociations were in for a shock, as an unforeseeable series of events erupted
soon after the corporation persuaded the US attorney’s of" ce to bring legal
actions using the DMCA: hackers, in the face of such new restrictions, re-
sponded to the arrest and lawsuits with a series of protests, during which
they af" rmed their free speech right to write and circulate source code.
Hackers and programmers took to the streets following the arrests of Jo-
hansen and Sklyarov. They received the arrest and other threats doled out
under the DMCA as a crisis for their community, and responded with potent
expressions of dissent. These protests further cemented the pragmatic and
political associations that many US and European F/OSS programmers had
been forging between free speech and source code— a link they now use
liberally to argue against the incursion of intellectual property restrictions
in software production.

Thus, under the DMCA banner (and the lawsuits and arrests doled out
under its jurisdiction), free and open- source licensing along with conven-
tional intellectual property law, both now part of a liberal legal tradition,
came into furious con2 ict. As noted by legal scholar Dan Hunter (2005,
1113), “these statutes [the DMCA and the Sonny Bono act] motivated a
number of public interest groups in a way that had never occurred before.
Up until the passing of this legislation, corporate interests lobbied for IP
expansion without much, if any public comment.” In particular, the DMCA’s
application to halt the dissemination of software led to some of the most
powerful expressions of protest among hackers and aligned various groups
(academics, librarians, and hackers) in their " ght against various trends in
intellectual property law. Sklyarov’s arrest proved a greater boon to the con-
solidation of the anti- DMCA movement than to the suppression of so- called
piracy.

During the 1990s, when trade associations began in earnest to expand
and strengthen the global reach of intellectual property laws while linking
them with trade issues, free software production acted informally as a train-
ing ground for an army of amateur legal scholars, critical of the new intel-
lectual property legislation. Free software hackers came to deeply value a le-
gal morality other than the neoliberal credo spun by copyright industries. As
part of this informal education process, hackers collectively learned a great
deal about the law of copyrights, patents, trademarks, and the DMCA— a
regime that many of them choose to resist, seeing it as a limitation on the
pursuit of hacking.

If most geeks and hackers were unaware of intellectual property law in
one era, in a subsequent period they had grown intimate with its inner
workings. To get an initial taste of the depth of legal consciousness among
hackers, take, for example, the IRC below among a handful of Debian de-
velopers, who are simultaneously judging a piece of technology and its copy-
right notice. This form of legal exegesis, which we will see in much greater

A TA L E O F T WO L E G A L R E G I M E S 8 7

detail in the conclusion, is today simply a part of the routine landscape of
many free software projects. In this case, a developer named “vilinger” is
posting the copyright terms of a piece of software. Vilinger’s fellow develop-
ers are critical of not only the software but its license as well, observing that
it is a “real crappy copyright statement” due to its vague language:

<vilinger> * Copyright © 1998– 1999 by [. . .]
<vilinger> * License: Free for any use with your own risk [. . .]
<vilinger> that doesn’t allow redistribution, does it
<wondele> vilinger: that’s a really crappy copyright statement.
<wondele> vilinger: it can mean almost anything [. . .]
<muf! eld> vilinger: doesn’t allow anything. effectively no license
<muf! eld> another license written by an idiot who didn’t comprehend

what copyright is
<muf! eld> (it’s a reasonably accurate description of the default, unli-

censed state of a work)
<lisa> My next copyright is going to just contain “Ask muf! eld”

Over ten years of active development and use of free software, a critical
mass of hackers had inculcated not simply a commitment to their craft but
also a well- developed ethos for information freedom and sharing that ran
aground against developments in intellectual property law.

Although much of the work of so- called intellectual property harmoni-
zation has been completed, it is too early to declare it a thing of the past,
a completed history; its future is still open. In fact, despite the fact that
harmonization is so often used to describe the creation of a single global
standard of intellectual property law, the marked con2 ict over intellectual
property law that resulted is far from harmonious. To take one prominent
illustration, in 2005 the European Parliament overwhelmingly rejected a
proposed software patent directive that was under consideration for a num-
ber of years. This decision came after pressure from a grassroots movement
that engaged in years of demonstrations, many of them organized and at-
tended by F/OSS developers (Karanovic 2010). The directive sought to es-
tablish and fully harmonize the criteria for software patentability, since each
national patent of" ce still follows a slightly different set of principles. The
European Commission over the last few years has aggressively tried to pass
patent measures that outline principles for adoption throughout the Euro-
pean Union— criteria that, like the US system, overwhelmingly favor private
enclosure over public access.

Not surprisingly, the intellectual property associations, once oblivious to
the legal alternatives provided by free software, are now not only aware of
open source but also actively attempting to halt the spread of this rival le-
gal regime. The International Intellectual Property Alliance, for instance, is-
sued the Special 301 Report about Brazil (recommending that Brazil remain
on the watch list due to numerous violations), and included the following

8 8 C H A P T E R 2

suggestions about open source: “Avoid legislation on the mandatory use of
open source software by government agencies and government controlled
companies,” as though open source itself were an example of piracy.25 If
free software developers are actively " ghting the harmonization of intellec-
tual property law, the intellectual property associations are actively " ghting
not only copyright infringement but more remarkable, the global spread of
open- source software too.

CO N C L U S I O N

In the late 1970s and early 1980s, a tidal wave of commercialization trans-
formed software from a technical object into a commodity, to be bought and
sold in the open market under the alleged protection of intellectual property
law. At least for a period of time, the soul of the machine seemed to retreat
from public view, leaving certain people, like Stallman, deeply perturbed by
these trends. And it was in part because of the political actions that Stall-
man took— notably by chartering the FSF, writing free software, and most
crucially, coming up with a legal hack to protect it— that hacking as a craft
based on the open exchange of knowledge continued to exist, although it
would be radically transformed.

Nevertheless, and this is key to emphasize, while Stallman’s political
actions were pivotal, they were not enough. In the ensuing years, his ac-
tions even sat in tension with the apolitical pursuit of hacking that also
contributed to the vibrant explosion of free software. Even though Stallman
injected an important spirit of resistance and a legal basis by which to prac-
tically secure a zone of partial autonomy, when free software enlarged into
a global movement, conscious resistance or political intention " gured less
prominently. During the subsequent years (1991– 98), free software grew
into a much larger technical and social movement in which geeks all over
the world participated in the day- to- day development of free software while
learning a new vocabulary by which to comprehend its cultural, technical,
and political signi" cance. It was a period of open experimentation and fes-
tive bewilderment, when developers slowly but surely started to inhabit a
new ethical terrain.

Critical to this enlargement was the widespread availability in the early
1990s of mass- produced technologies, like the personal computer, which
hackers used to connect to a “novel” global network, the Internet. On com-
puters, on the Internet, they could do what they found great pleasure in
doing: tinkering, experimenting, and building software together. During this
era, hackers developed new technologies and social mechanisms for work-
ing together virtually when not physically together. This brought hackers’
long- standing ideals and practices for collaborating to unforeseen heights,
and accidentally shifted where and how hacking could occur.

A TA L E O F T WO L E G A L R E G I M E S 8 9

If F/OSS grew into a discernible technical movement that was global in
scope between 1991 and 1998, then subsequent years (1998– 2004) wit-
nessed its diversi" cation. It gained credibility and visibility across vast sec-
tors of society, though in ways that sometimes con2 icted. For example, while
a linguistic name change from free software to open source made this arena
“open” for business, at the same time, and in a different direction, free soft-
ware inspired radical political activists to create free software to run tech-
nology collectives and grassroots media publishing Web sites. It was also
during this period that hackers formed a more acute consciousness of the
legal implications of F/OSS work and labor along with the laws and trends,
such as those of the DMCA, threatening their productive autonomy. During
the years that trade associations like the BSA pushed even more aggressively
for the expansion of the existing global intellectual property regime, the
social movement behind free software cohered, in many unexpected ways,
to become a potent legal counterpower— one composed of legal agreements,
free software, volunteer associations, conferences, journals, Web sites, and a
worldwide group of hackers now ethically committed to the idea of F/OSS.

In telling this history, I shared part of the story of what is frequently
referred to as the second enclosure movement (Boyle 2003). These devel-
opments, especially the early ones concerning software, were part of the
broader neoliberal context that helped engender free software in the " rst
place. Indeed, the early application of copyrights and patents on software
was the grain of sand that initiated the growth of the resulting pearl that
is free software. And yet at that time, although Stallman (and most other
hackers) were at some level cognizant of the impact of intellectual property
on their productive autonomy, they barely understood the particular work-
ings of copyright or patent law. The trade association representatives, of
course, were completely unaware of what was brewing within a particularly
esoteric and geeky enclave. Those hackers would, within twenty years, leave
this enclave to throw monkey wrenches into the project of harmonization,
sometimes intentionally, and at other times often unintentionally.

By the late 1990s, this landscape of consciousness had undergone a mas-
sive and historically signi" cant transformation. Both hackers and the spokes-
people for these trade associations were not only aware of each other; many
hackers also spoke a sophisticated legal language about the workings of in-
tellectual property and free software law that ran into direct opposition to
the dominant legal trends in intellectual property law. Two independent legal
trends, once worlds apart, now stand together in a state of direct con2 ict.

PART I I

CODES OF VALUE
••

Figure 3.1. WTFs/minute
Credit: Thom Holwerda.

Anthropologists often focus on cultural value— those ethical, aesthetic,
and political attributes of social life that a group has come to deem im-

portant, and that ultimately help de" ne it as distinct from other groups. The
next two chapters tackle the question of cultural value as a starting point to
address a host of questions about hacker technical and cultural production
along with the tensions that mark hackers’ social dynamics, collaborative
practices, and organizational forms.

Although we might be able to identify some indisputable commitments
among hackers, such as meritocracy and the form of individualism it entails,
the foundation of value among hackers is never without dispute and fric-
tion. Indeed, hacking, like all social domains, is shot through with a series
of notable tensions. These oscillate between individualism and collectivism,
elitism and humility, and frustration and deep pleasure, among others. There
are various codes— informal and formal— by which hackers negotiate the
tensions that characterize their productive landscape.

The next two chapters attend to what hackers value as well as the ten-
sions that are part and parcel of hacking, and the social codes by which
these tensions are partially resolved. Chapter 3 will examine the pragmatic
and aesthetic demands of writing code. Humor " gures prominently since
it mirrors the formal/pragmatic and poetic/aesthetic dimensions of coding,
and gets us closer to the most palpable tension in the hacker world— that
between individualism and collectivism, which is necessary to grasp notions
of creativity and authorship.

Chapter 4 steps away from the craft and aesthetics of hacking toward the
workshop where hacking now unfolds— the free software project. Focusing
on the Debian project, I continue to give attention to the central contra-
dictions that mark hacking, notably that between elitism and populism. A
new thread concerning ethical commitments to information freedom and
free speech also appears. Free software projects, while most famous as the
place where technical coordination unfolds, is also where signi" cant ethical
work transpires. It is here where commitments to free speech are inculcated,
thorny issues of meritocracies are resolved, and hackers embody and live
out a dense ethical practice.

C H A P T E R 3

The Craft and Craftiness of Hacking

••

I have nothing to declare but my genius.
— Oscar Wilde

I, for the " rst time, gave its proper place among the prime necessi-
ties of human well- being, to the internal culture of the individual.

— John Stuart Mill, Autobiography

Hackers value cleverness, ingenuity, and wit. These attributes arise not
only when joking among friends or when hackers give talks but also

during the process of making technology and writing smart pieces of code.
Take, for example, this short snippet of what many hackers would consider
exceptionally clever code written in the computer language Perl:

#count the number of stars in the sky
$cnt = $sky =~ tr/*/*/;

This line of Perl is a hacker homage to cleverness; it is a double enten-
dre of semantic ingenuity and technical wittiness. To fully appreciate the
semantic playfulness presented here, we must look at the " ner points of a
particular set of the developer population, the Perl hacker. Perl is a computer
language in which terse but technically powerful expressions can be formed
(in comparison to other programming languages). Many Perl coders take
pride in condensing long segments of code into short and sometimes inten-
tionally confusing (what coders often call “obfuscated”) one- liners (Mon-
fort 2008). If this above line of code were to be “expanded” into something
more traditional and accessible to Perl novices, it might read something like:

$cnt = 0;
$i = 0;
$skylen = length($sky)
while ($i < $skylen) {

9 4 C H A P T E R 3

$sky = substr($sky,0, $i) . ‘*’ . substr($sky, $i+1,
length($skylen));
$i++;

}
$cnt = length($sky);

We see that the Perl programmer has taken six lines of code and reduced
them to a single line by taking advantage of certain side effects found in the
constructs of the Perl language, and the very act of exploiting these side ef-
fects is a great example of a hack. With this transformation of “prose” into
terse “poetry,” the developer displays a mastery of the technical aspect of
the language. This mastery is topped on the semantic level by a quip. The
programmer has named the variable $sky, and the star is the asterisk (*)
character.1 The counting function in this program counts any appearance
of the asterisk symbol— hence, “counting the number of stars in the sky.”
This code has a technical function, but within a community of peers, its
performance is also a declaration and demonstration of the author’s savvy.

Hackers will publicly acknowledge such acts of “genius” and are thus
" ercely meritocratic— in ideology and practice. Yet given that so much of
hacker production is collective, a fact increasingly acknowledged and even
celebrated in the ethical philosophy of F/OSS, a commitment to individual-
ity, meritocracy, and independence is potentially subverted by the reality
of as well as desire to recognize their fundamental interdependence. The
belief in the value of individuality coupled with the constant need for the
help of other hackers points to a subtle paradox that textures their social
world. The tension between individualism and collectivism, in particular,
is negotiated through the extremely well- developed and common penchant
that hackers have for performing cleverness, whether through technological
production or humor. Hackers do not treat all forms of expression, technol-
ogy, and production as original and worthy expressions of selfhood. Instead,
one must constantly manifest, in the face of one’s peers, a discriminating and
inventive mind by performing its existence through exceptionally ingenious
and clever acts. By contributing a shining, awe- inspiring sliver of their cre-
ative self in a domain otherwise characterized by a common stock of knowl-
edge and techniques, hacker utilize humor or clever code to perform their
craftiness, and thus momentarily differentiate themselves from the greater
collective of hackers.

While this chapter describes the ethnographic expression of humor and
cleverness among hackers (which might be valuable and interesting in its
own right), it does so at the service of other, analytic goals. Examining
humor and cleverness will allow me to more richly demonstrate how ten-
sions (say, between individualism and collectivism) arise through the course
of technological practice, and how hackers partially resolve them. Taking
a close look at these frictions takes us a long way toward understanding

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 9 5

the social context under which these hackers labor and why free speech
ideals— in contrast to those of intellectual property instruments— resonate
with their experiences. The friction between individualism and collectivism
(and its articulation in meritocratic discussions) helps, for one, underwrite
a dynamic social environment in which hackers labor. Second, this tension
speaks directly to issues of authorship, selfhood, creativity, and intellectual
property in a way that extends, contrasts, and critiques the dominant intel-
lectual property regime.

The analysis opens by examining the pragmatics and aesthetics of hack-
ing, by which I mean the constraints and properties of their technological
activities, and contrasting the writings of two hackers, Espe and Da Mys-
tik Homeboy (DMH). Understanding the pragmatics of hacking is nec-
essary to grasp the contradictions/tensions that mark hacking along with
what I call the poetics of hacking: the extreme value hackers place on in-
genuity, craftiness, and cleverness. I will explore these largely through the
angle of humor. The " nal section revisits the tension between individual-
ism and collectivism. Hackers assert a form of individualism that valorizes
self- expression and development among peers engaged in similar acts of
technological production, while tightly entangled with each other through
constant collaboration.

HA C K E R PR A G M AT I C S

Python: Reaching a Transcendental Space
I remember when I found python, back in the 1.52 days [1.52 refers
to a version number].2 I was an unemployed slacker living in a student
co- op. I’d sit in a (since disappeared) cafe in Berkeley and write reams
of more or less useless code, simply for the joy of it. I’d reach some sort
of transcendental state fueled by relevant whitespace, clear syntax, and
pints of awfully strong, black coffee. In those days I " rst felt the pure
abstract joy of programming in a powerful way— the ability to conjure
these giant structures, manipulate them at will, have them contain and
be contained by one another. I think I learned more in those couple of
months, thanks to Google and a free ricochet connection, than in my
previous years in CS [computer science].

Eventually, however, it became clear I had to get a real job. Flaky
freelance contracts which never paid sucked so hard. So, I hemmed and
hawed and was con2 icted and " nally got a job, and it involved perl. It
was, perhaps, a worst- case perl scenario. A very rapidly growing web-
site, a few developers with vastly different styles, a lack of real commu-
nication, and a pronounced lack of appreciation for namespaces. From
my high tower of control and purity, I’d been thrown into a bubbling
pool of vaguery and confusion. Cryptic variables would pop out of

9 6 C H A P T E R 3

the aether, make an appearance in a 2000 line CGI [Common Gate-
way Interface], and never be heard from again. Combating naming
schemes would meet where different spheres of developer in2 uence
overlapped— $postingTitle and $PostingTitle doing battle in the same
subroutine. Scripts almost— but not quite— deprecated. The situation
is quite a bit more under control now, 3 years later.

 — Espe

Perl: Hacking in the Big Ball of Mud
Perl has been derided by many people as an ugly, dif" cult to learn
language that enforces bad habits. I generally do not advocate perl to
people who are attempting to learn programming, or even mention
it’s existence. However, perl, for better or worse, is a culmination
of decades of culture. Perl is a Unix Gematria— an arcane relation
of symbols evolved in a manner similar to Jewish Qabbalistic nu-
merology. Many other languages, such as python or Java, attempt
to enforce a strict framework and rule set of contracts, interfaces,
strong typing, and private methods to delineate functionality. While
much of this stems from noble traditions of SmallTalk and ML [they
are computer languages], much of it also fails to realize the point
of these ancestral languages: categorization (such as through strict
typing and object models) is itself a form of computation. When this
fact is not respected, you wind up with a bastardized language that
is [. . .] Anal.

Perl was designed by a linguist, and realizes that people have dif-
ferent things to say in different contexts, and your language is de" ned
by the environment and not vice versa. As Paul Graham said, both
the world and programming is a “Big Ball of Mud,” which perl has
evolved around. The implicit variables, the open object model, the
terse expressions all contribute to hacking on the Big Ball of Mud.

Finally, there is a very pragmatic reason to like perl: It will save
your ass. Those who are 2 uent enough in the culture to realize that
“this problem has been solved before,” will be able to invoke forces
through perl. Again, similar to the numerologists, with a few arcane
symbols that are undecipherable to the outside world, great acts of
magik can be accomplished.

 — Da Mystik Homeboy

Espe is a San Francisco hacker who is clearly fond of Python, an open-
source computer language. Originally created by a Dutch programmer as
a teaching language, Python is now a thriving open- source project. The
language’s distinguishing feature (both aesthetic and technical) is its strict
technical parameters that require bold syntactic clarity. For example,

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 9 7

Python is unusual among programming languages in that the amount of
space used to indent a line of code actually affects the code’s meaning. On
his blog (excerpted above), Espe explains how he was able to hack to his
heart’s delight for no other reason than to experience “the joy of program-
ming.” His stance toward Python is reverent, rooted in deep pleasure. He
obviously adores both the formal structure— Python— and the substance—
coffee— that have enabled him to hack for his own enjoyment and self-
development. In this instance, Espe constructs programming as a pleasing,
unencumbered exercise of ample creativity. He seeks in hacking to reach
the elusive quality of perfection.

By the next paragraph, however, his register shifts to one of dismayed ir-
reverence toward another programming language, Perl, considered by many
to be the antithesis of Python, and therefore a source of antipathy for many
Python fanatics. Eventually forced to hack for money (a problem itself for
this programmer), he was handed “a worst- case scenario.” Poorly coded
Perl transformed programming from an activity of boundless satisfaction
into a nightmarish ordeal. Espe describes this unfavorable turn of events
as being plucked from his “high tower of control and purity,” only to be
“thrown into a bubbling pool of vaguery and confusion.” In having to read
and parse other people’s codes, programmers routinely encounter what has
been depicted aptly as a “twisting maze of corridors, a bottomless pit” (Ull-
man 2003, 262).

In the second extract, we have DMH, also a San Francisco hacker, but
unlike Espe, a self- styled Perl alchemist. Perl’s creator, a linguist and pro-
grammer named Larry Wall, intended the code to embody the 2 exible and
often- irrational properties of a natural language. As noted by DMH, Perl’s
aesthetic and technical features are opaqueness, complexity, and 2 exibility.
Also run as an open- source project, Perl is incorporated into the identity of
many of its supporters, who call themselves Perl Monks, underscoring the
single- minded dedication they have for what is considered a language that
can produce poetic (or highly unreadable code) that is creatively displayed
during obfuscated code contests, which are usually held for Perl, C, and C++.3

While DMH respects Perl for what it is most famous for— its cryptic
nature and poetic elegance— he is drawn to Perl for pragmatic reasons. Its
“implicit variables, the open object model, the terse expressions,” DMH
says, allow him to hack on the “Big Ball of Mud”— that is, the world of
thick, unmanageable problems and constraints. For DMH, Perl’s appeal lies
in its extensive common stock of shared solutions and architectural 2 ex-
ibility, which he contrasts to Python, a language so “anal” it is unable to
accomplish “great acts of magik.” By this he means what is known among
Perl geeks as the Perl’s motto: “TIMTOWTDI” (There’s more than one way
to do it).

Digital computers allow for the creation and use of mini- machines (aka
software) written by programmers using any number of computer languages.

9 8 C H A P T E R 3

Instead of having to build a piece of hardware for every type of desired func-
tion (like a calculator, music recorder, or word processor), the computer is
a general- purpose machine that once animated by software programs, can
potentially behave as all those functional objects. Espe captures the expan-
sive technical capability of software when he de" nes coding as “the ability
to conjure these giant structures, manipulate them at will, have them con-
tain and be contained by one another.” This is computing in its dimension
of unfettered freedom.

If at one level hackers adroitly exploit the expansive technical capabilities
of the computer, they are also signi" cantly limited by a powerful force " eld
of constraint— the Big Ball of Mud that DMH refers to in his tract on Perl.
Constraints are constant and of a nearly in" nite variety, such as hardware
speci" cations and failures, computer language syntax, “clueless” managers,
inherited “crufty” or vague code, spam, incompatible " le formats, “dumb”
patent laws, misguided customers, technical speci" cations, and manager-
dictated deadlines. Problems are so central to software that some have even
portrayed “glitches” as the “manifestation of genuine software aesthetic”
(Goriunova and Shulgin 2008, 111).

Programming thus entails an expansive form of exploration and pro-
duction that unfolds into a labyrinthine landscape of intricate barriers and
problems. Julian Dibbell (2006, 104; see also Ensmenger 2010, 3) depicts
the nature of computing, quite poetically, as an “endlessly repeatable col-
lusion of freedom and determinism— the warp and woof of " xed rules and
free play, of running code and variable input.” Because of constraints and
the complexity of coding, to hack up solutions effectively, as Michael Fischer
(1999, 261) notes, requires “a constant need for translation, interfacing,
sharing, and updating.”

As part of this practical capacity, the very nature of hacking— turning
a system against itself— is the process of using existing code, comments,
and technology for more than what their original authors intended. This is
the paradox of constraint. Since many technical objects are simultaneously
bound by certain limits yet exhibit potential excesses (Star and Griesemer
1998), during the course of their existence, they can be exploited and redi-
rected toward new paths of functionality by acts of hacking. Hackers are
thus attuned not simply to the workings of technology but also seek such
an intimate understanding of technology’s capabilities and constraints that
they are positioned to redirect it to some new, largely unforeseen plane.
They collectively and individually derive pleasure in outwitting constraint.
In essence, while hacking follows a craftlike practice, it is predicated on a
stance of craftiness to move the craft forward. Hacking is where craft and
craftiness converge.

Programming and similar technical activities require extremely rigorous
logical skills, an unwavering sensitivity to detail (a single wrong character
can render a program useless), and such an intimate command of a system
that one can, if need be, exceed the conventional or intended constraints of

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 9 9

the system. It requires, in the words of programmer Ellen Ullman (2003,
177), a “relentless formalism.” Given the accelerated pace of technologi-
cal change, hackers also have to perpetually learn new technologies as old
ones are phased out due to obsolescence, in order to remain competitive in
a marketplace.

Out of this routine form of technical activity hackers have constituted
an expansive pragmatic practice of instrumental yet playful experimenta-
tion and production. In these activities the lines between play, exploration,
pedagogy, and work are rarely rigidly drawn. Sometimes hackers will be
motivated by a work- oriented goal, as is/was the case with DMH. At other
times, they are motivated to hack for the sheer pleasure of doing so, as
Espe emphasized. In either case, frustration and pleasure are fundamental
to hacking.

A lifetime of creative and pleasurable technical production that often
depends on computers also blurs the line between selves and objects. As fa-
mously phrased by Sherry Turkle (1984), computers are a hacker’s “second
self.” The hacker relationship to computers and software, though, rarely
exists in a steady state in which the self unproblematically melds with this
object to catapult hackers into a posthuman, postmodern state of being.
The hacker relationship with the computer is a far more " nicky, prickly, and
interesting affair in which computers themselves constantly misbehave and
break down (as do the hackers, at times, when they burn out from such an
intense and demanding craft). Hackers sometimes confront their computers
as an unproblematic and beloved “object,” and at other times view them as
an independent and recalcitrant “thing”— a differentiation posed by Hei-
degger ([1927] 2008) in his famous exploration of things and objects.

In Heidegger’s cartography, an object strikes its users as familiar and be-
yond the scope of critical awareness. Its social meaning is held in place
through regular patterns of use and circulation. But when we misuse an ob-
ject (a spoon used as a knife or a can opener utilized as a hammer) or when
an object malfunctions, its thingness is laid bare in the sense that its material
characteristic becomes evident. As noted by scholar of things and stuff Bill
Brown (2001, 4), “the story of objects asserting themselves as things is the
story of how the thing really names less an object than a particular subject-
object relation.”

In order to appreciate the hacker relationship to computers, this subtle
differentiation between an object and a thing is crucial. Hacker technical
practices never enact a singular subject- object relation, but instead one that
shifts depending on the context and activity. There are times when hack-
ers work with computers, and in other cases they work on them. Much
of hacker technical practice can be described as an attempt to contain the
thingness of computers that arises through constant problems and con-
straints by transforming it back into a paci" ed, peaceful object that then
becomes an ideal vehicle for technical production as well as creative expres-
sion. At times, their labor is characterized by grinding effort, and in other

1 0 0 C H A P T E R 3

instances, it involves far more pleasurable streams of seemingly friction- free
work. The “Python versus Perl Wars” above articulates the metapragmatic
understandings of hacker labor that makes it possible to enter into this rela-
tional oscillation in the " rst place.

HA C K E R CL E V E R N E S S

Humor can be dissected, as a frog can, but the thing dies
in the process and the innards are discouraging to any but

the pure scienti" c mind.
— E. B. White, A Subtreasury of American Humor

As the examples provided by Espe and DMH display, hacker technical prac-
tice is rooted in a playful, analytic, and especially re2 ective stance toward
form that switches between reverence and irreverence depending on individ-
ual preferences as well as the context of activity. Hackers routinely engage
in a lively oscillation of respect and disrespect for form, often expressed in
arguments over the technical idiosyncrasies, strengths, and weaknesses of a
programming language, OS, or text editor. These disagreements are the sub-
ject of a range of humorously formulated “holy wars,” such as Perl versus
Python (which we just got a glimpse of), vi versus Emacs (text editors), and
Berkeley Software Distribution versus Linux (different Unix- based OS). De-
spite this, hackers otherwise share an ideal about how labor and production
should proceed: with remarkable craftiness and wit.

One important vehicle for expressing wit is humor. As Mary Douglas
(1975, 96) famously theorized, joking brings together “disparate elements
in such a way that one accepted pattern is challenged by the appearance
of another,” and can be generally de" ned as “play upon form.” Before
expanding on the role of humor among hackers, it is key to highlight that
hackers are able to joke with such facility because of the habituated dis-
positions (Bourdieu 1977) of thought along with tacit knowledge (Polanyi
1966) acquired through a lifelong and routine practice of logic- oriented
problem solving. Hackers liberally enjoy hacking almost anything, and
because their cultivated technical practice requires an awareness and rear-
rangement of form, they are able to easily transfer embodied mental dis-
positions into other arenas. To put it bluntly, because hackers have spent
years, possibly decades, working to outsmart various technical constraints,
they are also good at joking. Humor requires a similarly irreverent, fre-
quently ironic stance toward language, social conventions, and stereotypes
(Douglas 1975).

The mastery and craft of hacking, however, do not fully account for
the craftiness of hackers.4 Many of the engineering arts and sciences are
guided by similar aesthetic- solving sensibilities, mandates, and preoccupa-
tions (Galison 1997; see also Jones and Galison 1998). Engineers and other

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 1

craftspeople, such as repairpersons, also deploy similar problem- solving
skills rooted in tinkering: they must engage with the limits, possibilities, and
constraints of various material objects, and " ddle around to " nd a nonobvi-
ous solution (Orr 1996; Sennett 2008).

Hacker aesthetics share these above- mentioned dispositions, but differ
in that hackers see ingenuity and cleverness, often expressed though hu-
mor, as far more than a means to regiment and guide technological innova-
tion.5 Among hackers, humor has a substantial life of its own. Hackers value
craftiness and cleverness for their own sake. Whereas academic scientists
tend to value referential cleverness as it concerns their work, hackers value
cleverness as self- productive, and thus make it appropriate to nearly any
context (mathematicians, though, are well known for their proli" c humor
that exceeds their discipline). Hackers idealize cleverness as a characteristic
par excellence that transforms what they spend all of their time doing—
creating technology and " xing problems in a great maelstrom of complexity
and confusion— into an activity of shared and especially sensual pleasure.

Before extending my theoretical discussion on cleverness and humor, per-
mit me to provide a few examples that are embedded in technical artifacts
and one that arose during social interaction. Since much of hacker wit is so
technically coded, it is dif" cult to translate it in any meaningful manner to a
lay audience, and I am afraid it might not strike nongeek readers as all that
humorous. Analyzing humor, after the fact, is also nearly never humorous,
but hopefully it can still be analytically illuminating. I have chosen four
examples that are more accessible to a nontechnical audience and supply at
least a taste of the types of jokes common among hackers.

Peppering technical artifacts with clever quips occurs quite commonly in
hacker technical naming conventions or documentation. For instance, most
software applications also come with some sort of description of their pur-
pose and functionality. Jaime Zawinski, the author of a software application
called BBDB, portrays his creation via a smattering of jokes (most software
applications include a description of their functionality):

BBDB is a rolodex- like database program for GNU Emacs. BBDB stands for
Insidious Big Brother Database, and is not, repeat, not an obscure refer-
ence to the Buck Rogers TV series.
It provides the following features:
Integration with mail and news readers, with little or no interaction by the
user:
easy (or automatic) display of the record corresponding to the sender of the
current message; automatic creation of records based on the contents of the
current message; [. . .]

While the “Insidious Big Brother Database” is an obvious and playful recog-
nition of the common hacker mistrust of governmental authority, the Rog-
er’s reference is more esoteric and thus only a small fraction of hackers will

1 0 2 C H A P T E R 3

be able to decipher it: those hackers who have watched the television series.
With the cue offered in the documentation, those hackers will immediately
catch the author’s irony (that this is a reference to the show) and recognize
that BBDB refers to the series’ pint- size robot Twiki, whose preferred mode
of communicating is a noise that sounds remarkably like “B- D- BBBB- D.”

I am particularly fond of the next example contained in the manual (usu-
ally shortened to “man page”) for Mutt, a popular email client among geeks.
Man pages provide documentation and are included with almost all Unix
systems. They typically follow a strict standard for conveying information
about the program by designating a set of common categories under which
programmers provide detailed information about the software, such as the
name, synopsis, description, options, " les, examples, and authors. One im-
portant category is bugs, where authors list the problems and glitches with
the software. (Software can have a number of bugs and glitches yet still
work. The bug category gives you a sense of what these glitches are and
when they will emerge.) The Mutt man page exploits the fact that the word
mutt can mean a mongrel dog. Notice the category of bugs:

NAME
mutt— The Mutt Mail User Agent

SYNOPSIS
mutt [- nRyzZ] [- e cmd] [- F ! le] [- m type] [- f ! le] [. . .]

DESCRIPTION
Mutt is a small but very powerful text based program for read-
ing electronic mail under Unix operating systems, including
support color terminals, MIME, and a threaded sorting mode.

OPTIONS
— A alias

An expanded version of the given alias is passed to stdout.
— a ! le

Attach a ! le to your message using MIME. [. . .]

BUGS
None. Mutts have # eas, not bugs.

FLEAS
Suspend/resume while editing a ! le with an external editor
does not work under SunOS 4.x if you use the curses lib in /
usr/5lib. It does work with the S- Lang library, however.
Resizing the screen while using an external pager causes
Mutt to go haywire on some systems. [. . .]

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 3

My last example of this subtle integration of wit in a technological arti-
fact comes in the form of a warning message. Many software programs and
related artifacts are accompanied by dramatic warnings that appear during
con" guration. These are intended to alert the user that its integration into
some software systems may produce unanticipated, drastic, and completely
undesirable results (like breaking multiple parts of your software system
that took " ve weeks to get “just right”). Often this happens because a piece
of software is still experimental and riddled with bugs. The following help
message is available in the 2.6 branch of Linux kernel con" guration and
refers to the RAID- 6 device driver, which at the time was still under develop-
ment and hence buggy:

WARNING: RAID- 6 is currently highly experimental. If you use it, there is no
guarantee whatsoever that it won’t destroy your data, eat your disk drives,
insult your mother, or re- appoint George W. Bush

These three examples demonstrate that hackers value subtlety and irony
of presentation. Hackers discretely embed nuanced, clever and frequently
nonfunctional jokes within what are otherwise completely rational, con-
ventional statements of function. Yet hackers never use jokes to undermine
the functionality or trustworthiness of the code or documentation. These
technical artifacts are judged seriously by geeks. The presence of wit only
works to add to the value of the rational content by reminding the user
that behind these highly systematized genres, there is a discriminating and
creative individual.

Other instances of hacker wit occur in person and are less subtle. For ex-
ample, at a security conference in 2001, Peiter Zatko, aka “Mudge,” a com-
puter security researcher, professional, and hacker (once part of the famous
hacker association L0pht Heavy Industries), arrived in a terrycloth bathrobe
to present on a panel on PDAs. This bold sartorial statement distinguished
him from his nonhacker colleagues, also security researchers, but scientists.
It prioritized hacker over scienti" c identity. Mudge’s attire, however, per-
formed a problematic public- private breach in the context of his talk, which
focused on the changing use patterns of PDAs. “PDAs were designed for per-
sonal use, but are now being used more for business,” Zatko said. “There’s
a security boundary that’s being crossed.”6 Zatko’s robe embodied his argu-
ment that the shift amounted to a breached security boundary: PDAs should
not be used for sensitive, private data.

Though humor is found worldwide, instances like the ones just described
are fruitful to the anthropologist because of their cultural particularity. As
this playful practice usually induces laughter— a state of bodily affect that
enraptures an audience— humor can potentially produce forms of collective
awareness and shared sociality. Given these two properties, we can de" ne
humor, in the most general terms, as a play with form whose social force lies

1 0 4 C H A P T E R 3

in its ability to accentuate the performer, and which at times can work to
delineate in- group membership.

Apart from this, the meaning of humor is otherwise quite culturally spe-
ci" c. The power to enrapture and entangle people can lead to entirely con-
trary social effects. In certain cases and types of groups, joking can establish
and maintain hierarchies as well as social boundaries by, say, delineating so-
cial roles (Gusterson 1998; Mulkay 1988; Radcliffe- Brown 1952). In other
cultural and historical contexts, humor pushes the envelope of conceptual
boundaries in ways that may be 2 eeting and frivolous (Douglas 1975), or
politically subversive (Bakhtin 1984; Critchley 2002). In other words, be-
cause the effect, purpose, and even form of humor are deeply context de-
pendent, culturally in2 ected, and historically moored, it is a useful tool for
analyzing broader forms of cultural meaning.

Among hackers, humor is a distilled and parsimonious instantiation of
the adoration of cleverness. It is an especially effective way of enacting hack-
ers’ commitment to wittiness precisely because, unlike the objects of hacker
technical production, joking has no strict functional utility, and speaks to
the inherent appeal of creativity and cleverness for their own sake. Joking
is a self- referential exercise that designates the joker as an intelligent person
and cleverness as autonomously valuable.

It bears repetition that hackers draw on their pragmatic ability to ma-
nipulate form to engage in this type of joking. These two elements— being
good at hacking and valuing cleverness for its own sake— exist in a tight
and productive symbiosis, a mutually reinforcing relation that produces an
abundance of humor among hackers. There is a close kinship between hack-
ing and humor.

Insofar as humor is tethered to the moment of its utterance, it exudes
an auric quality of spontaneous originality (Benjamin [1936] 2005), which
among hackers authenticates the self as a distinctive and autonomous indi-
vidual. Humor is one of the starkest expressions of the hacker “ideal self.”
By telling jokes, hackers externalize what they see as their intelligence and
gain recognition from technically talented peers.

Like hacker technological production, humor also works to implicitly
con" rm the relational self who is joined to others by a shared domain of
practice, and a common stock of implicit cultural and explicit technical
knowledge. Recall that many jokes, such as technical Easter eggs, are re-
ceived as pleasurable gifts. They not only break the monotony and grind
of sitting at the computer, usually for hours a day as one churns out code
or resolves problems, but also remind hackers of their shared experiences.
“One might say that the simple telling of a joke,” writes philosopher Simon
Critchley (2002, 18), “recalls us to what is shared in our everyday practices.
[. . .] So, humor reveals the depth of what we share.” If humor creates " ne
distinctions, it also levels the ground, because in the very moments of laugh-
ter, hackers implicitly recognize and celebrate the shared world of meaning
in which they work. After all, like many instances of joking, much of hacker

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 5

humor is so culturally coded (which here means technically in2 ected) that
the only people who can routinely receive, and as such appreciate, their wit
are other hackers. One must rely on the acknowledgment and judgment of
those who can appreciate the performance of wit, because they share at least
some of one’s implicit values, explicit technical knowledge, and standards
of creative evaluation.

To the extent that everyone enjoys laughter, humor functions much as a
communal gift— the performance of which beckons others to follow suit. In-
deed, once one hacker starts joking, many others will dive in. It also breaks
the monotony and eases the strains of hacking, and so can also be seen as
a mechanism to preserve hackers’ humanity (and sanity) in the face of the
merciless rationale of the machine they engage with everyday. When humor
is woven into the actual code or technical artifacts animating the machine,
it brings otherwise- mechanic language directly and unmistakably into the
realm of human communication.7 Once part of the apparatus of human
communication, humor powerfully con" rms a shared mode of being in the
world; in other words, it af" rms a lifeworld. The very expression of humor
is seen as proof that despite their physical dispersion and sense of indepen-
dence, hackers nonetheless cohabit a shared social terrain built around a
lifelong intimacy with technology and technical thinking— one they have
come to celebrate.

Among hackers, humor functions in multiple capacities and undoubtedly
re2 ects the value they place on productive autonomy as well as the drive to
perform cleverness. Much of their humor is ironic— a play with form. Its pur-
pose is to arrive on the scene of the joke (often a technical object) unexpect-
edly. This is also the ideal nature of a great hack, insofar as it should surprise
other hackers into a stance of awe. Humor, as Douglas (1975, 96) reminds
us, is “a play upon form that affords an opportunity for realizing that an ac-
cepted pattern has no necessity.” This de" nition bears a striking resemblance
to the pragmatics of hacking; hackers are constantly playing on form, reveal-
ing that there is no single solution to a technical problem. And although
hackers claim it is abominable to reinvent the wheel, in practice, they are
constantly doing so as they follow their own creative instincts and visions.

In its ability to concurrently accentuate inclusiveness and exclusiveness,
and make and level hierarchies, humor shapes conventions of sociality, ide-
als of creativity, and hackers’ attitudes toward one another and outsiders.
Now let’s take a closer look at the tension between individuality and col-
lectivism to which humor so delectably points us.

CO M M U N A L PO P U L I S M A N D IN D I V I D U A L EL I T I S M

If hacker pragmatics oscillate between a respect and disrespect for form,
hacker sociality alternates between communal populism and individual
elitism. Largely by way of F/OSS philosophy, hackers laud mutual aid and

1 0 6 C H A P T E R 3

cooperative reciprocity as vital features of technical collaboration. They
spend an inordinate number of hours helping each other. But there is also
an elitist stance that places an extremely high premium on self- reliance, in-
dividual achievement, and meritocracy.8 While the populist stance af" rms
the equal worth of everyone who contributes to an endeavor, the elitist one
distributes credit, rewarding on the basis of superior accomplishment, tech-
nical prowess, and individual talent— all judged meticulously by other hack-
ers. Hackers will spend hours helping each other, working closely together
through some problem. Yet they also engage in agonistic practices of techni-
cal jousting and boasting with peers, and in turn, this works to create hier-
archies of difference among this fraternal order of “elite wizards.” Ullman
(1997, 101) condenses this tension into few words: “Humility is as manda-
tory as arrogance.” The line between elitism and populism is not simply an
intellectual afterthought posed by me, the anthropologist, but also a living,
relevant, affective reality discussed and dissected by hackers.

This duality arises during the course of their work, and is openly dis-
cussed in ethical and pragmatic terms. On the one hand, hackers speak of
the importance of learning from others and construe knowledge production
as a collective enterprise— and this rhetoric is frequently matched in practice
by truly generous and copious acts of sharing. In any given minute of the
day, I can log into one of the developers’ IRC channels, and there will be
some developers asking a question, getting an answer, and giving thanks, as
this example illustrates:

<zugschlus> does anybody know how to con! gure sound in KDE4? [KDE
is a desktop environment.]

<pusling> Zugschlus: in systemsettings
<zugschlus> pusling: applications => settings?
<kibi> but AFAICT [“as far as I can tell”], what you have in svn helped me

build various thingies against libqt4- dev and friends.
<pusling> Zugschlus: computer > s- ystemsettingns
<pusling> KiBi: I think qt4 is now waiting in new.
<zugschlus> pusling: that part only has home, network, root and trash.
<kibi> pusling: oh, ok :(
<pusling> Zugschlus: do you have the package systemsettings installed?
<pusling> KiBi: so if you have special contacts to ftp team, feel free to use

them.
<kibi> pusling: yep, seen it.
* kibi can try
<kibi> Ganneff: mhy: ^^^ if you want to help kfreebsd- * folks get more

packages built, fast- tracking qt4- x11 would really be great. Thanks for
considering. :)

<zugschlus> pusling: no, that was missing. thanks.
<pusling> Zugschlus: you then probably want to make sure you have

kde- minimal installed.

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 7

Guiding this practice is the idea that the free software project represents an
endeavor that far exceeds any single person’s efforts, and thus everyone’s
contribution is highly regarded, whether it involves " ling a bug report or
offering a signi" cant, large- scale innovation.

On the other hand, hackers often express a commitment to self- reliance,
which can be at times displayed in a quite abrasive and elitist tone. The most
famous token of this stance is the short quip “Read the Fucking Manual”
(RTFM). It is worth noting that accusations or RTFM replies are rarer than
instances of copious sharing. Let me provide two examples of RTFM in ac-
tion. In the " rst, “Error” drops into a new channel after asking a question
in the #perl channel, where he got a prompt RTFM, after which everyone
else went back to discussing the band Metallica. In this channel, they did not
offer an RTFM but instead suggested going to the #metallica channel, which
in this case, is a joke [IRC channels are designated by #name- of- channel].

<813- error> i ask a question in #perl and get RTFM and they go back to
talking about metallica [. . .]

<813- error> d Match digit character <that would be numbers right?
* C4 knows nothing of perl
<modem> same here :/
<modem> ask in #metallica

The second example does not contain a joke but rather only a rebuke in
the form of RTFM:

<karsten> Ace2016: alsamixer / aumix are interactive ncurses programs
<ace2016> so?
<karsten> Ace2016: You may be able to steer ’em w/ stdin as well.
<ace2016> can’t they accept a command like aumix— volume decrease

10% or something like that?
<karsten> Ace2016: RTFM
<karsten> Ace2016: Which is to say, I don’t know. Go look yourself.

These two poles of value re2 ect pervasive features of hacker social and
technical production as it unfolds in everyday life. It only takes a few days of
following hacker technical discussion to realize that many of their conver-
sations, whether virtual or in person, are astonishingly long question- and-
answer sessions. To manage the complexity of the technological landscape,
hackers turn to fellow hackers (along with manuals, books, mailing lists,
documentation, and search engines) for constant information, guidance, and
help. Unlike academics— who at times religiously guard their data or " nd-
ings until published, or only circulate them among a small group of trusted
peers— hackers freely share their " ndings, insights, and solutions. More than
ever, and especially in the context of free software projects, hackers see their
productive mutual aid as the underlying living credo driving free software
philosophy, and the methodology of collaboration and openness. Hackers

1 0 8 C H A P T E R 3

maintain that this mode of production is responsible for better hackers and
better technology.

Alongside technical question- and- answer sessions, developers dissect
the ethics of their labor. For example, on a Debian mentors’ mailing list
discussion, one aspiring hacker asked, “How did you get from the middle
ground to guru- dom?? Or is the answer that if I need to ask, I will never
be a hacker!!??” A developer known for his humility and proli" c contribu-
tions to the Debian project offered a lengthy response— a small section of
which I quote below. In highlighting the importance of sharing, learning for
others, and even coding for others, he af" rms a populist stance, commonly
expressed by many Debian developers:

One other inspiration for me has been helping people. Though this has
been spottier than I could hope, I do from time to time end up doing
some program entirely because I can see other people need it. This
tends to broaden experience a lot. Things like writing programs for an
unfamiliar platform (microsoft), in a unfamiliar language (spanish),
and needing to work closely with the people who would use it, cannot
help but change how you look at things. My most valuable experi-
ences in this area have been when I had direct contact with the people
who would be using the program, rather than just noticing a hole and
deciding I would try to go " ll it like you did.9

Here he accords weight to pedagogy and collective interdependence in
which learning from and even coding for others is a crucial component of
technical progress as well as self- development.

During this discussion, though, other developers stressed the importance
of independence by urging the questioner to follow his own particular inter-
ests necessary to cultivate technical independence. For example, one devel-
oper offered the following advice:

I think you made two mistakes. [. . .] The " rst is looking to other
people for problems to be solved. You’ll never " nd the inspiration in
solving problems that don’t affect you. Since you don’t feel the itch,
you don’t get much satisfaction from the scratch. Speaking for myself,
I picked up a programming manual for my " rst computer and started
reading; well before I was " nished, I had two dozen ideas for programs
to write. Those programs and their spinoffs kept me busy for a couple
of years, and I loved it. Second, when an itch hits you, don’t research
to see if someone has already solved the problem. Solve it yourself.
Mathematical texts aren’t " lled with answers right beside the prob-
lems; they teach you by making you work out the answers yourself.10

Simply in marking the question as misguided (because he looks to other
people for problems to be solved), this developer asserts the value of self-
determination. The original question violated what is the predominant

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 0 9

(though not unquestioned) norm of self- suf" ciency among developers— a
norm that captures the isolated and individualistic phenomenology of much
of their labor, which for many hackers commenced in childhood.

One developer, in answering a question I had about the signi" cance of
free software, expressed this stance of technical self- determination and in-
dependence in the following terms: “If I am cut off from the world, then in
theory then I can maintain my own domain over software. I don’t have to
depend on anyone else; I can do it all myself. If my computing environment
diverges from everyone else’s in the world, I can still keep on going.” This
commitment to a fully autonomous, sovereign self who shuns any obvious
signs of dependence on others is a common trait among developers. Given
this mode of laboring, it is not surprising that hackers place so much empha-
sis on autonomy and self- suf" ciency— qualities that are congenial to many
hackers as they resonate so strongly with the very experience of intense
periods of isolated labor.

Yet this statement of independence is based on a hypothetical scenario
of being “cut off from the world”— something even this developer quali" es
as unlikely.11 In most practical instances, hackers are constantly plugged
in, connected through various technical structures of communication. They
work together as well as in complete isolation, for personal and joint pub-
lic projects. Software theorist Matthew Fuller (2008, 5) describes how the
freedom of coding gets subsumed by a host of conditions that always lay
outside code proper: “Computation establishes a toy world in conformity
with its axioms, but at the same time, when it becomes software, it must,
by and large [. . .] come into combination with what lies outside of code.”

Generally, the need to both work alone and with others is experienced
free of contradiction, because the two needs are complementary and readily
recognized as such by most hackers. To take another example from the mail-
ing list discussion on what transforms a mediocre hacker into a great one,
a developer captured this duality by describing how hacking tacks between
two productive extremes— the collaborative and individual— that are not
mutually exclusive:

Creating a linux distribution is a group activity, but creating art is
fundamentally a solitary, private experience. Turn off your internet
connection; sit in a dark room, with nothing but the glow of a moni-
tor, the warmth and hum of your computer, and the ideas will 2 ow:
Sometimes a trickle, sometimes a torrent.12

These two modes can clash, however. This is powerfully signaled through
a form of stylized boasting that contrasts one’s intelligence with the idiocy
of “mere users” of software. While users of free software are often lauded
as essential participants in the broader project of technical development
because they provide insightful queries and bug reports (and also are seen
as possible future hackers), at other times they are deemed second- class

1 1 0 C H A P T E R 3

technical citizens.13 This designation is frequently accomplished through the
only way in which socially uncomfortable topics can be routinely discussed:
by joking. On developer IRC channels, hackers playfully mock users. By
complaining about stupid questions and queries, hackers depict users as less
worthy contributors for lack of technical pro" ciency, or may display their
complaints elsewhere, such as including humorous email signatures that
taunt the wider universe of (l)users.14 This condescending attitude is aptly
and humorously conveyed in the following quote from a developers’ email
signature, originally formulated by Richard Cook: “Programming today is
a race between software engineers striving to build bigger and better idiot-
proof programs, and the Universe trying to produce bigger and better idiots.
So far, the Universe is winning.”

Users, though, are by no means the only type of persons subject to the
humorous or more vitriolic accusation of technical incompetence. If a ques-
tion is posed in the wrong register, is seen as uninteresting, or the answer
can easily be found elsewhere, nearly anyone from a mere user to a “skilled”
developer can receive the stylized and semihumorous RTFM rebuff. Stated
on a hacker site with vivacious bite:

[RTFM] is a big chromatic dragon with bloodshot beady eyes and
fangs the size of oars. RTFM is me screaming at you as " reballs come
out of my mouth to get off your precious no- good tush, march down
to the local bookstore or MAN page repository, and get the eff off my
back because I’m trying very hard to get some freakin’ work done.
Jeez.15

If you are better informed with the knowledge that there is “NO MAN-
UAL,” you can quickly defend your honor (i.e., intelligence) by pointing this
out and gain substantial respect if you take it on yourself to write documen-
tation. Otherwise, you will have to swallow the rebuke, google for the in-
formation, and hope for a better response next time (or simply " nd another
IRC channel and ask elsewhere).

A complicated set of norms and conventions surround asking for help.
They depend on the social context of the query and who is asking the ques-
tion. For example, once someone has garnered a certain amount of trust and
respect, they can usually get away with asking what is seen as a nonchal-
lenging, uninteresting question. Developers who have not yet established
trust will frequently get immediate help if the question is seen to be a chal-
lenge, but a basic questions will raise immediate eyebrows, especially among
strangers or members who are technically unvetted, and therefore must ma-
neuver with more caution and tact.

RTFM is a comedic, though stern, form of social discipline. It pushes other
hackers to learn and code for themselves as well as af" rms that effort has
been put into documentation— an accessible form of information that ben-
e" ts the group— but in a way that still requires independent learning. Many
users and developers complain of the lack of adequate documentation for

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 1

free software, faulting the tendency of some developers to exist in technical
silos, “sel" shly” coding only for themselves, and not attending to the needs
of other users and developers by writing technically boring but necessary
documentation. Many developers also note how the lack of extensive docu-
mentation can hinder collaborative technical work. Thus, when someone
asks for information that in fact does exist in documentation, they often
receive the RTFM rebuke, whose subtext says, “go learn for yourself, es-
pecially since others have already put in the work (i.e., documentation) to
make this happen.” To give too much aid is to deny the conditions necessary
for self- cultivation.

The use of RTFM is disputed as well. During the 2005 Debian project
leader election, the issue of documentation erupted during a mailing list
debate. The subject of RTFM rebukes was broached directly. One developer
argued that RTFM is an in2 ammatory, unproductive response to newcomers
who may " nd themselves confused and overwhelmed with Debian’s techni-
cal and procedural complexity. To make new users feel welcome, he believed
that developers should refrain from replying with RTFM, and instead focus
their efforts on achieving greater transparency and accessibility. While de-
bating a Debian project leader candidate who had been with the project for
years, he conveyed this commitment to corporate populism when he stated:

You know a lot about the project [and its project internals], so it’s all
obvious to you. There are people among us who have not been part
of Debian since 1.1, but who would like to know more about what’s
happening behind the curtains. However, those people are often told
to RTFM or go spend time in the code, or just not taken seriously.16

In response, the Debian project leader candidate defended the general use of
RTFM, concisely enunciating the value of self- determination:

When the code is public, rtfm is the proper answer. One might add
“document it properly afterwards” as well, though. When the data
is available as well, that’s best. Some data cannot be made available
for legal or other binding obligations (new queue, security archive). If
you feel that some bits are missing and need to be documented better,
point them out and get them documented better, maybe by doing it on
your own. I know a lot about the project because I’ve been involved in
many parts. Other developers are involved in many parts as well. Some
other developers mostly whine about not being involved without try-
ing to understand. *sigh*17

In other words, if the requested information is public, it is incumbent on the
developer to seek it out, and if unsatis" ed with the current state of acces-
sibility, then the next logical step is to make it happen— by yourself. If one
does, one can display self- determination and self- development, the vehicles
by which to gain the respect of accomplished peers on a similarly paved
technical path.

1 1 2 C H A P T E R 3

If the subject of elitism erupts on mailing list discussions over project or-
ganization, a form of stylized boasting, taunting, cajoling, and elitist disdain
is also frequently performed through code. Here I provide two examples.
And again note how humor is used in both, to some degree working to
soften the abrasive tone of these messages.

The " rst one is written in the style of an “I- can’t- believe- how- idiotic- this-
problem- I- have- to- solve- is rant” that disparages a bug in the Emacs email
reader. Before addressing the signi" cance of his code, permit me defer to the
coder, Karl Fogel, to explain the context of the problem and the technical
nature of his solution:

Basically, the mailreader insisted on colorizing my mail composition
window, even though I tried every documented method available to
ask it not to do that. In desperation, I " nally wrote code to go “behind
the back” of the mailreader, and fool it into thinking that it had al-
ready done the colorization when it actually hadn’t.18

The comments open with a statement of disbelief; take note of the naming
of the variable, which I highlight in bold and italics:

;; I cannot believe what I have to do to turn off font locking in mail
;; and message buffers. Running “(font- lock- mode - 1)” from every
;; possibly relevant gnus- *, mail- *, and message- * hook still left
my
;; reply buffers font- locked. Arrrgh.
;;
;; So the code below fools font- lock- mode into thinking the buffer
is
;; already fonti! ed (so it will do nothing— see
;; font- lock.el:font- lock- mode for details), and then makes sure
that
;; the very last thing run when I hit reply to a message is to turn
;; off font- lock- mode in that buffer, from post- command- hook.
Then
;; that function removes itself from post- command- hook so it’s
not run
;; with every command.

(defun kf- compensate- for- fucking- unbelievable-
emacs- lossage ()
(font- lock- mode - 1)
(remove- hook
‘post- command- hook
‘kf- compensate- for- fucking- unbelievable- emacs- lossage))

(add- hook ‘font- lock- mode- hook ‘kf- font- lock- mode- hook)
(defun kf- font- lock- mode- hook ()

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 3

(if (or (eq major- mode ‘message- mode)
(eq major- mode ‘mail- mode))
(progn
(make- local- variable ‘font- lock- fonti! ed)
(setq font- lock- fonti! ed t)
(add- hook ‘post- command- hook
‘kf- compensate- for- fucking- unbelievable- emacs-
lossage)
)))

By opening the comments with “I cannot believe what I have to do” and
ending with “Arrrgh,” he signals the fact that this sort of trite problem is so
idiotically banal, it should have never appeared in the ! rst place. Fixing it
is a waste of his superior mental resources. Lest there be any ambiguity as
to what the author really thought about the code, he continues to drive the
point home in his rant by naming the variable with an unmistakably deliber-
ate insult: “compensate- for- fucking- unbelievable- emacs- lossage.”

During the course of my early research, I was shocked at the disjoint
between the in- person real- world “codes of conduct” and the “codes of soft-
ware conduct.” Nothing about this coder’s personality, who I got to know
very well over the course of " ve years, would indicate such haughty decla-
rations. There is no need for such an indication because these enunciations
are rarely a matter of innate psychology. Instead, these are conventionalized
statements by which hackers declare and demarcate their unique contri-
bution to a collective endeavor. They also represent culturally sanctioned
mechanisms for judgment.

Fogel’s code is an apt example of “face work” (Goffman 1967, 5)—
when a hacker is sanctioned to perform a “line,” which is the “pattern
of verbal and nonverbal acts by which he expresses his view of the situ-
ation and through this his evaluation of the participants, especially him-
self.” Within such a presentation, hackers can declare and demarcate their
unique contribution to a piece of software while at the same time prof-
fering technical judgment. One may even say that this taunting is their
informal version of the academic peer- review process. In this particular
case, Fogel is declaring the code he patched as an utter failure of the
imagination.

Because these insults are critical evaluations of work, if hackers dare
to make such pronouncements, they also have to make them technically
clever enough to be accepted as accurate critiques. After a declaration is
made, a hacker should be ready to enter the arena of competitive jousting. If
one hacker judges some piece of code, it is almost guaranteed that another
hacker may reply with chutzpah of their own, often in humorous guise.

The second example demonstrates this type of competitive play of tech-
nical volleyball, a form of “antiphony” of “call and response” common to
jazz poetics (Gilroy 1993, 78). While jazz poetics may seem strange to apply

1 1 4 C H A P T E R 3

to hacking, I will expand on this connection later when addressing hacker
notions of creativity. First, let’s take a closer look at this portion of the code
that shows the use of boasting to induce a response (I have highlighted the
relevant section in italics):

/* Prime number generation
Copyright (C) 1994 Free Software Foundation

This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License as
published by the Free Software Foundation; either version 2, or
(at your option) any later version.

This program is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of

MERCHANTABILITY or FITNESS FOR A PARTICULAR PUR-
POSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */

#include <stdlib.h>
#include <string.h>

/* Return the next prime greater than or equal to N. */
int
nextprime (int n)
{

static int *q;
static int k = 2;
static int l = 2;
int p;
int *m;
int i, j;

/* You are not expected to understand this. */

if (!q)
{
/* Init */
q = malloc (sizeof (int) * 2);
q[0] = 2;
q[1] = 3;

}

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 5

Derived from the FSF’s Hurd development project, which is its kernel
project, the code is a prime number generator. Programmers have told me
that the technical details are fairly intricate, so I refrain here from providing
an explanation of the actual mechanics of the code, and for the sake of anal-
ysis it is not necessary. The important element is the author’s comment: “/*
You are not expected to understand this. */.” It reveals how boasting is an
open invitation to engage in technical jousting— a playful taunt that explic-
itly encourages the technical comeback that proves the expectation wrong.

The author’s intentions are pretty clear in the code, but here is his ret-
roactive explanation: “At this point I offered the function as a challenge to
Jim Blandy. [. . .] That the function was intended to produce prime num-
bers was never hidden; the challenge was to explain its technique.” Blandy
took the call to technical arms and responded with his own exegesis of the
algorithm. When the original author of the prime number function updated
the code, he changed the taunt to “/* See the comment at the end for an
explanation of the algorithm used. */,” and at the end of the code, stated,
“Jim produced the following brilliant explanation” and included it within
the code (and again, I have indicated the relevant section in italics).

/* Prime number generation
C [. . .]
#include <stdlib.h>
#include <string.h>
/* Return the next prime greater than or equal to N. */ [. . .]
/* See the comment at the end for an explanation of the algo-
rithm
used. */
if (!q)

{
/* Init */ [. . .]

* [This code originally contained the comment “You are
not expected to understand this” (on the theory that ev-
ery Unix- like system should have such a comment some-
where, and now I have to ! nd somewhere else to put it).
I then offered this function as a challenge to Jim Blandy.
At that time only the six comments in the function and
the description at the top were present.
Jim produced the following brilliant explanation.]
The static variable q points to a sorted array of the ! rst l natural
prime numbers. k is the number of elements which have been
allocated to q, l <= k; we occasionally double k and realloc q ac-
cordingly to maintain this invariant.
The table is initialized to contain a few primes (lines 26, 27,
34- 40). Subsequent code assumes the table isn’t empty.

1 1 6 C H A P T E R 3

When passed a number n, we grow q until it contains a prime
>= n
(lines 45- 70), do a binary search in q to ! nd the least prime >=n
(lines 72- 84), and return that. [. . .]

If some hackers are ready to pounce on what they deem as the idiocy
of others, they are also as likely to dole out recognition where they see
" t. Hence, even while hackers are on a path toward self- development, this
self- fashioning is intimately bound to others, not simply because of a love
of tinkering or the dependence derived from collaboration, but because
any meritocratic order based on expertise fundamentally requires others for
constant evaluation as well. Hackers use the path of humor, taunt, jousting,
boasting, and argument for such expressions of technical taste and worthi-
ness, and in the process, cultivate themselves as expert hackers.

JU S T FR E E D O M

Given hackers’ proclivity for expressing cleverness, acknowledgment that
they build on the shoulders of giants, need to garner recognition from oth-
ers, and dual penchant for lauding populist collectivism and individual self-
determination, what might these attributes reveal about hacker notions of
personhood, creativity, and authorship?

It is not surprising that in so much of the literature, hackers are treated
as quintessentially individualistic (Levy 1984; Turkle 1984). “The hacker,”
Turkle (1984, 229) writes, “is the defender of idiosyncrasy, individuality, ge-
nius and the cult of individual.” Some authors argue that this individualism
is a close variant of a politically suspicious libertarianism (Borsook 2000).
Hackers are perpetually keen on asserting their individuality through acts
of ingenuity, and thus these statements are unmistakably correct. In most
accounts on hackers, however, the meaning of this individualism is treated
as an ideological, unsavory cloak or is left underspeci" ed. Why the pro-
nounced performance of individualism? What does it say about how hack-
ers conceptualize authorship? What tensions does it raise?

Because hackers do not automatically treat software as solely derivative
of one laboring mind but instead see it as derivate of a collective effort,
the constant drive to perform ingenuity re2 ects the formidable dif" culty
of claiming discrete inventiveness. After all, much of hacker production is
based on a constant reworking of different technical assemblages directed
toward new purposes and uses— a form of authorial recombination rarely
acknowledged in traditional intellectual property law discourse.

Because of the tendency, especially now more than ever, for hackers to
recognize the reality of collaboration, it may seem that they are moving to-
ward the type of politics and ethics of authorship that 2 atly reject the ideal

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 7

of individualism altogether— a rejection famously explored in the works of
Roland Barthes, Michel Foucault, and Dick Hebdige. In the F/OSS domain,
hackers have not moved, even an inch, to decenter the persona of the author
in the manner, say, most famously exempli" ed by Barthes, who in 1967
sought to dethrone the authority of an author: “To give a text an Author is
to impose a limit on that text, to furnish it with a " nal signi" ed, to close the
writing.”19

Instead, among hackers the authorial " gure seems to speak slightly louder,
clamoring for and demanding credit and recognition, established through
oral histories of software or etched into the infrastructure of production.
Hackers record contributions and attributions in common " les included with
source code, such as the Authors and Contributors " les (Yuill 2008). This ar-
chival drive helps partially explain why certain hackers can also receive the
legendary status they do. This everyday discourse and inscription develops
a shared historical awareness about who contributed what— one that brings
attention to the conditions of production or the nature of the contribution.
Furthermore, accountability and credit are built into many of the technical
tools that facilitate collaboration, such as CVS and Subversion— software
systems used to manage shared source code. These systems give developers
the ability to track (and potentially revert to) incremental changes to " les
and report the changes to a mailing list as they are made, and are often used
concurrently by many developers. Since developers all have accounts, these
technologies not only enable collaboration but also provide precise details
of attribution. Over time, this record accumulates into a richly documented
palimpsest. Though individual attribution is certainly accorded, these tech-
nological palimpsests re2 ect unmistakably that complicated pieces of soft-
ware are held in place by a grand collaborative effort that far exceeds any
one person’s contribution.20

In contrast to many accounts on authorship, I " nd that a short descrip-
tion about the aesthetics of jazz and its “cruel contradiction” is eerily evoca-
tive of the hacker creative predicament:

There is a cruel contradiction implicit in the art form itself. For true
jazz is an art of individual assertion within and against the group.
Each true jazz moment (as distinct from the uninspired commercial
performance) springs from a context in which each artist challenges all
the rest, each solo 2 ight, or improvisation, represents (like the succes-
sive canvases of a painter) a de" nition of his identity: as individual, as
member of the collectivity, and as link in the chain of tradition. Thus,
because jazz " nds its very life in an endless improvisation upon tradi-
tional materials, the jazzman must lose his identity even as he " nds it.
(Ellison 1964, 234; quoted in Gilroy 1993, 79)

Among hackers this cruelty, this dif" culty in establishing discrete originality,
is in reality not so cruel. It is treated like any interesting problem: an enticing

1 1 8 C H A P T E R 3

hurdle that invites rigorous intellectual intervention and a well- crafted so-
lution within given constraints. Hackers clearly de" ne the meaning of the
free individual through this very persistent inclination to " nd solutions;
they revel in directing their faculty for critical thought toward creating bet-
ter technology or more sublime, beautiful code. The logic among hackers
goes that if one can create beauty, originality, or solve a problem within the
shackles of constraints, this must prove a superior form of creativity, intel-
ligence, and individuality than the mere expression of some wholly original
work.

Not every piece of technology made by hackers quali" es as a hack. The
hack is particularly the “individual assertion within and against the group”
(Ellison 1964, 234), which may be easily attached to an individual even
though it is still indebted to a wider tradition and conversation. Hackers
certainly engage in a creative, complex process partially separated from hi-
erarchy, enfolding a mechanics of dissection, manipulation, and reassembly,
in which various forms of collaboration are held in high esteem. Much of
their labor is oriented toward " nding a good enough solution so they can
carry forth with their work. But their form of production is one that also
generates a practice of cordial (and sometimes not- so- cordial) one- upping,
which simultaneously acknowledges the hacker’s technical roots and yet at
times strives to go beyond inherited forms in order to implement a better so-
lution. If this solution is achieved, it will favorably reveal one’s capacity for
original, critical thought— the core meaning of individuality among hackers.

Hackers recognize production as the extension or rearrangement of in-
herited formal traditions, which above all requires access to other people’s
work. This precondition allows one to engage in constant acts of re- creation,
expression, and circulation. Such an imperative goes against the grain of
current intellectual property law rationalizations, which assume that the
nature of selfhood and creativity is always a matter of novel creation or
individualized inventive discovery.

Among F/OSS hackers, the moral economy of selfhood is not easily re-
ducible to modern “possessive individualism” (Graeber 1997; Macpher-
son 1962). Nor does it entirely follow the craftsperson or the stand- alone
romantic author " gured by intellectual property jurisprudence but rather
evinces other sensibilities that point to competing liberal concepts of in-
dividualism and freedom. While hackers envisage themselves as free and
rational agents, in the context of free and open- source hacking, most hack-
ers place less emphasis on the freedom to establish relations of property
ownership and exchange. Instead, they formulate liberty as the condition
necessary for individuals to develop the capacity for critical thought and
self- development.21

While the hacker interpretation of labor, creativity, and individuality
strays from in2 uential liberal understandings of personhood— possessive
individualism— it does not represent a wholly novel take on these themes.

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 1 9

It aligns with the type of person presupposed in free speech theory, perhaps
most lucidly in Mill’s writings, which in2 uenced the shape, content, and
philosophy of free speech jurisprudence as it now exists in the United States
(Bollinger and Stone 2002; Passavant 2002). Mill, in2 uenced by the Roman-
tic tradition (Halliday 1976), de" nes a free individual as one who develops,
determines, and changes their own desires, capacities, and interests autono-
mously through self- expression, debate, and reasoned deliberation (Donner
1991). It is a vision that fuses utilitarian and romantic commitments, and
is built on the idea of human plasticity and development— the ability of the
self to grow and develop through creative expression, mental activity, and
deliberative discussion, usually by following one’s own personally de" ned
path. As Wendy Donner argues, this form of liberal self- cultivation also re-
quires the establishment of standards by which to judge the development of
the human faculties. Mill’s “transformed conception of utility necessitates a
new method of value measurement which relies heavily on the judgment of
competent agents,” writes Donner (1991, 142), “and thus essentially rests
on a doctrine of human development and self- development.” What is no-
table is how Mill ([1857] 1991, 93) contends in his famous On Liberty that
an individual must follow their own path of development, because “persons
[. . .] require different conditions for their spiritual development.” Even if
this Romantic inclination prioritizes the individual, one can only develop
the critical faculties along with moral and aesthetic standards via a process
of training and open- ended argumentation in debate with other similarly
engaged individuals.

Much of free software legal philosophy and moral sensibilities bear
remarkable similarities to this Millian (and thus also Romantically in-
formed) vision of personhood, self- development, and liberty, although
there are differences and speci" cations tied to hacking’s unique relations
between persons, labor, and technology. Hackers place tremendous faith
in the necessity and power of expressive activity that springs from deep
within the individual self— an expression that acts as the motor for posi-
tive technical change. Progress depends on the constant expression and
reworking of already- existing technology. Thought, expression, and inno-
vation should never be sti2 ed, so long as, many developers told me during
interviews, “no one else is hurt”— a sentiment that is part and parcel of
Millian free speech theories.

Free software developers have come to treat the pursuit of knowledge
and learning with inestimable high regard— as an almost sacred activity,
vital for technical progress and essential for improving individual talents. As
one software developer observed, “I can use the code for my own projects
and I can improve the code of others. I can learn from the code so that I
can become a better programmer myself, and then there is all my code out
there so that you can use it. It is just freedom.” The spirit of this statement
is ubiquitous among F/OSS developers. A utilitarian ethic of freedom and

1 2 0 C H A P T E R 3

openness is increasingly seen as not only obvious but also indispensable in
order to develop the “state of the art.”

For developers, technical expression should always be useful. If it isn’t,
it denies the nature of software, which is to solve problems. Yet hackers
also place tremendous value on the aesthetic pleasures of hacking, produc-
ing technology and software that may not have any immediate value but
can be admired simply on its own elegant terms— as a conduit for personal
self- expression.

Over years of coding software with other developers in free software
projects where discourses about liberty run rampant, many developers come
to view F/OSS as the apex of writing software, as we will see in the next
chapter. It has, they say, the necessary legal and material features that can
induce as well as fertilize creative production. In contrast to the corporate
sphere, the F/OSS domain is seen as establishing the freedom necessary to
pursue personally de" ned technical interests in a way that draws on the
resources and skills of other individuals who are chasing down their own
interests. In other words, the arena of F/OSS establishes all the necessary
conditions (code, legal protection, technical tools, and peers) to cultivate the
technical self and direct one’s abilities toward the utilitarian improvement of
technology. While many developers enjoy working on their corporate proj-
ects, there is always a potential problem over the question of sovereignty.
One developer told me during an interview that “managers [. . .] decide the
shape of the project,” while the F/OSS arena allows either the individual or
collective of hackers to make this decision instead. F/OSS allows for techni-
cal sovereignty.

The hacker formulation of individuality, as the pursuit of one’s interest
for the mutual bene" t of each other and society, is an apt example of the
general characterization of modern individualism as de" ned, according to
Taylor (2004, 20), by “relations of mutual service between equal individu-
als.” While much of liberal thought understands mutual service in terms of
economic exchange, hackers relate to it through the very act of individual
expression and technical creation— the only sound ways to truly animate
the uniqueness of one’s being.

CO N C L U S I O N

As noted in the previous section, even though hackers tend to approach
other hackers as equals, they also construct themselves as high- tech cogno-
scenti creating the bleeding edge of technology. This elitism follows from
their commitment to the organizational ideal of meritocracy, a performance-
based system that applauds individual skill, encourages respectful competi-
tion between peers, and sanctions hierarchies between developers, especially
in the F/OSS project to be discussed at length in the subsequent chapter.

T H E C R A F T A N D C R A F T I N E S S O F H AC K I N G 1 2 1

The meritocratic ideal, ubiquitous in liberal thought, has particular reso-
nance in the US popular imaginary. The United States is often thought of
as a living embodiment of meritocracy: a nation where people are judged
on their individual abilities alone. The system supposedly works so well
because, as the media myth goes, the United States provides everyone with
equal opportunity, usually through public education, to achieve their goals.
As such, the hierarchies of difference that arise from one’s ability (usually to
achieve wealth) are sanctioned by this moral order as legitimate.

In many senses, hackers have drawn from what is still a prevalent trope of
meritocracy to conceptualize how they treat one another and self- organize.
In his classic account of hackers, Levy (1984, 43) includes this principle as
one of the six elements that de" ne the hacker ethic, noting that “hackers
should be judged by their hacking, not bogus criteria such as degrees, age,
race, or position,” in which “people who trotted in with seemingly impres-
sive credentials were not taken seriously until they proved themselves at the
console of the computer.”

Though written twenty years ago, this commitment to meritocracy still
holds undeniable sway in the way F/OSS hackers construct norms of so-
ciality and envision selfhood, not because it exists in the same exact way,
but rather because hackers have given it new meaning by organizationally
building the institution of the free software project guided by a dedication
to meritocracies. Hackers who participate in free software projects routinely
asserted that F/OSS projects are run as meritocracies. The doors are open
to anyone, they insist; respect and authority are accorded along the lines of
superior and frequently individual technological contribution. As we will
see in the next chapters, F/OSS hackers may not build perfect meritocracies
and yet they are certainly motivated to implement them.

For F/OSS hackers, it is imperative to constantly and recursively equal-
ize the conditions by which other hackers can develop their skills and prove
their worth to peers. As part of this equalization process, one must endow
the community of hackers with resources like documentation and the fruits
of one’s labor: source code. The free software hacker does not privatize the
source of value created, even those exceptional pieces of code that are un-
deniably one’s own and seen to emerge from sheer technical ability. Within
F/OSS, this value is fed back and circulated among peers, thereby contrib-
uting to an endowed and growing pool of resources through which other
hackers can constantly engage in their asymptotic process of self- cultivation.

This constant recirculation of value is one way in which hackers can
explicitly downplay their elitism and display their sound technical inten-
tions to their peers. Their implementation of meritocracy contrasts mark-
edly with the ideal of it in capitalist societies, where the privatization of
value is legitimate as long as one generates wealth (or gains other forms of
status) through one’s personal ability. In fact, numerous issues over who
and what are responsible for equalizing the terrain of competition plague

1 2 2 C H A P T E R 3

liberal democracies marked by a meritocratic ideal. This leveling is often seen
as secured through such avenues as public education. That, in turn, raises
questions like, Should capitalist philanthropists (such as John Rockefeller in
the past and Gates in the present), individuals, governments, or property tax
fund public education? With hackers, these sets of thorny issues are mini-
mized, partially resolved by their constant recirculation of value, notably
software and documentation, as well as debates and con2 icts over mentor-
ship and helping.

Still, the predominant sentiment is that once knowledge has been released
to the collective of hackers, individuals must, on their own two feet, prove
their worth by creating new forms of value that can be fed back recursively
to the community. If one seeks too much help, this violates the hacker imple-
mentation of the proper meritocratic order, and one might be subjected to a
stylized rebuff such as the common RTFM.

Among hackers, the commitment to elitism and meritocracy historically
has run fairly strong. There is still an ambivalent relationship to elitism and
this meritocratic ideal, however, as I will explore in more detail in the next
chapter. I will show how those vested with authority on software projects,
because of their success, are usually met with some degree of suspicion,
and thus jokes and sometimes accusations of cabals run rampant among
hackers. This requires them to constantly perform their trustworthiness and
demonstrate their good technical intentions to the community at large. I
now turn to the institution, the free software project, where technological
production unfolds, and where commitments to free speech and meritocracy
are further speci" ed under the aegis of a tremendously varied set of ethical
practices.

C H A P T E R 4

Two Ethical Moments in Debian

••

F/OSS projects largely take place on the Internet. Varying in size from
a couple of developers to a network of over one thousand, they are

sites where programmers coordinate and produce high- quality software. A
growing body of literature has addressed questions of developer motivation
(Raymond 1999), project structures, and changing implications for software
development along with factors that lead to success and failures in projects
(Crowston and Howison 2005; O’Mahony and Ferraro 2007; Schweik and
English 2012), open- source legality (McGowan 2001; Vetter 2004, 2007),
utilitarian and rational choice incentive structures (Gallaway and Kinnear
2004; Lancashire 2001; von Hippel and von Krogh 2003), the economics
of open- source software (Lerner and Tirole 2001; Lerner and Schankerman
2010; von Hippel 2005), and the noneconomic incentive mechanisms, cul-
tural norms, and broader sociopolitical implications of F/OSS production
(Benkler 2006; Berry 2008; Chopra and Dexter 2007; Ghosh 1998; Hi-
manen 2001; Kelty 2008; Kollock 1999; Lessig 1999; Weber 2004).

Although a number of these studies tangentially discuss ethical questions
(e.g., con2 ict resolution within F/OSS projects), they rarely address how de-
velopers commit themselves to an ethical vision through, rather than prior
to, their participation in a F/OSS project. Much of the F/OSS literature, in
other words, is heavily focused on the question of motivation or incentive
mechanisms, and often fails to account for the plasticity of human motiva-
tions and ethical perceptions.

Many of these authors acknowledge the importance of shared norms, and
usually address this by referring to or quoting the famous passage in Levy’s
Hackers where he de" nes the tenets of the hacker ethic. In a general sense,
these principles still powerfully capture the spirit of ethical commitments.
Nevertheless, by leaning so heavily on Levy, what we miss is how these
precepts take actual form and how they change over time. The literature,
crucially, has tended to ignore how hacker commitments are transformed by
the lived experiences that unfold within F/OSS projects.1

This chapter uses the Debian project to demonstrate how free software
development is not simply a technical endeavor but also a moral one. The

1 2 4 C H A P T E R 4

analysis is informed by the work of the legal theorist Robert Cover, who
examines the ways that “jurisgenesis,” the production and stabilization of
inhabited normative meanings, requires an ongoing and sometimes con2 ict-
ing interpretation of codi" ed textual norms. “Some small and private, others
immense and public,” these continual acts of reinterpretation and commit-
ment establish what Cover (1993, 95) calls a nomos:

We inhabit a nomos— a normative universe. We constantly create and
maintain a world of right and wrong, of lawful and unlawful. [. . .]
No set of legal institutions or prescriptions exists apart from the nar-
ratives that locate it and give it meaning. For every constitution there
is an epic, for each decalogue a scripture. Once understood in the con-
text of the narratives that give it meaning, law becomes not merely a
system of rules to be observed, but a world in which we live.

As Debian has organizationally matured, it has also concurrently devel-
oped along legal and ethical lines, codifying key principles in two related
documents: the Social Contract and DFSG. Developers continually draw on
these texts to craft a dense ethical practice that sustains itself primarily via
ongoing acts of narrative interpretation.

While the idea of nomos provides a useful general framework for under-
standing how ethical stances are codi" ed and internalized, for my purposes
here, I specify its meaning by distinguishing among a repertoire of every-
day micropractices that I group under two distinct (and contrasting) ethical
moments: enculturation and punctuated crisis. While in practice these two
moments exist in a far more complicated mixture and copresence, here they
are separated for the sake of clarity and analytic value. Each one tells us a
slightly different story about how people use narrative to adopt values, and
then animate and transform them over time.

By ethical enculturation, I refer to a process of relatively con2 ict- free
socialization. Among developers, this includes learning the tacit and explicit
knowledge (including technical, moral, or procedural knowledge) needed
to effectively interact with other project members as well as acquiring trust,
learning appropriate social behavior, and establishing best practices. Al-
though ethical enculturation is ongoing and distributed, the most pertinent
instance of it in the Debian project is the New Maintainer Process (NMP)—
the procedure of mentorship and testing through which prospective devel-
opers apply for and gain membership in Debian. Ful" lling the mandates
of the NMP is not a matter of a few days of " lling out forms. It can take
months of hard work. A prospective developer has to " nd a sponsor and
advocate, learn the complicated workings of Debian policy and its techni-
cal infrastructure, successfully package a piece of software that satis" es a
set of technical standards, and meet at least one other Debian developer
in person for identity veri" cation. This period of mentorship, pedagogy,
and testing ensures that developers enter with a common denominator of

T WO E T H I CA L M O M E N T S I N D E B I A N 1 2 5

technical, legal, and philosophical knowledge, and hence become trusted
collective members.

The other moment I investigate is crisis. As the number of developers in
the Debian project has grown from one dozen to over one thousand, punc-
tuated crises routinely emerge around particularly contested issues: matters
of project transparency, internal and external communication, membership
size, the nature of authority within the project, and the scope and limits of
software licenses. Many of these crises have an acute phase (usually spurred
by a provocative action or statement) in which debate erupts on several
media all at once: mailing lists, IRCs, and blog entries. While the debate dur-
ing these periods can be congenial, measured, rational, and sometimes even
peppered liberally with jokes, its tone can also be passionate, uncharitable,
and sometimes downright vicious.

During these times, we " nd that while developers may share a common
ethical ground, they often disagree about the implementation of its prin-
ciples. Though the content of these debates certainly matters (and will be
discussed to some extent), my primary focus is on the productive affective
stance induced by these crises. I argue that these are instances of assessment,
in which people turn their attentive, ethical beings toward an unfolding situ-
ation and engage in dif" cult questions. In this mode, passions are animated
while values are challenged and sometimes reformulated. Although these
debates sometimes result in project stasis, demoralization, or exodus, they
can produce a heightened and productive ethical orientation among devel-
opers. Crises can be evaluated as moments of ethical production in terms of
not only their functional outcomes but also their ability to move people to
re2 exively articulate their ideals. Such dialogic, con2 icted debate re2 ects the
active engagement of participants who renew and occasionally alter their
ethical commitments. As such, crises can be vital to establishing and reestab-
lishing the importance of normative precepts.

The main purpose of this chapter is to explicate how different instances
of ethical labor de" ne the cohesive yet nonunitary moral commitments that
developers hold toward Debian and its philosophy of freedom. It is neces-
sary to " rst brie2 y introduce Debian’s history and structure.

Thus, much of what is described in this part of the chapter is Debian’s
historical transition from an informal group (organized largely around char-
ismatic leadership, personal relationships, and ad hoc decision making) to
a stable institution. Most F/OSS projects in their infancy, including Debian,
operate without formal procedures of governance and instead are guided by
the technical judgments of a small group of participants. This informal tech-
nocracy is captured in a famous pronouncement by a hacker pioneer, David
Clark, who helped develop the early protocols of the Internet: “We reject:
kings, presidents and voting. We believe in: rough consensus and running
code” (quoted in Hoffman 2011).2 Even though an ideal of rough consen-
sus still exists in Debian today, Debian developers have had to demarcate

1 2 6 C H A P T E R 4

membership criteria, explicitly de" ne roles, and implement a complicated
voting protocol in order to successfully grow.

Although charismatic leadership, improvised actions, and informal rela-
tionships still exist in the project today, these have been supplemented by
other modes of formal governance. Through Debian’s tremendous growth,
developers have cobbled together a hybrid organizational structure that in-
tegrates three different modes of governance— democratic majoritarian rule,
a guildlike meritocracy, and an ad hoc process of rough consensus. It is
unsurprising, then, that many of Debian’s crises result from con2 icts arising
from differences in these three models. What I want to emphasize is how
responses to these crises often clarify the purposes and limits of each mode
of interaction.

Democratic voting reveals Debian’s populist face; it is an acknowledg-
ment that each developer is a valuable contributor to the project and de-
serves an equal say in its future. Yet democracy and especially majoritarian
voting is frequently viewed as an ineffective, improper method for resolving
technical matters, because the mediocrity of the majority can overrule the
“right” technical decisions. For this reason, developers are notably com-
mitted to an open- ended process of argumentation, where vigorous debate,
conducted over mailing lists, bug reports, and IRC channels, ideally clari" es
the right solution and leads to enough rough consensus to proceed. In this
mode, everyone is treated as an equal subject with the potential to convince
others of the merit or demerit of a given technical solution, regardless of
their status in the project.

This approach af" rms two long- standing liberal dispositions. First, it
displays the value placed on speech and debate in determining a nonpar-
tisan resolution to collective problems, theorized, say, in the work of Jür-
gen Habermas (1981). This commitment also exhibits the preference that
Debian developers hold for individually generated decision making in lieu
of top- down regulation or management. These tendencies are not unique to
Debian developers, though. For instance, Thomas Malaby (2009, 60) de-
scribes the mistrust of the hierarchical management that he routinely wit-
nessed among the programmer employees of Linden Lab, makers of Second
Life, which he portrays as a “politically charged disposition, one that tended
to treat top- down or vertical decision making as the antithesis of empow-
ered and creative action.”3

However skeptical Debian hackers are of rigid, top- down authority, their
system of equal opportunity nonetheless leads to some established modes
and nodes of authority, and thus is also the basis for the hierarchies that
inhere in meritocracies. Individual developers who over time come to dem-
onstrate their technical worth through a combination of ability and dedica-
tion eventually obtain the status of a trusted technical guardian. As such, a
meritocratic system arises that vests power in roles, such as delegates and
various technical “masters” who hold power for unspeci" ed periods of time.

T WO E T H I CA L M O M E N T S I N D E B I A N 1 2 7

As the very names of their roles suggest, guardians are not unlike the guild
masters of times past who held the trust and respect of other guild members
because of their wisdom, experience, and mastery of the craft.

If democratic rule is sometimes treated with overt suspicion and dislike,
there is a far more subtle fear concerning the importance of meritocracy
and the meritocrats it produces— namely, the fear of corruption. Speci" cally,
there is discomfort with the idea that the technical guardians could (as they
are vested to do) exercise their authority without consulting the project as
a whole, thereby foreclosing precisely the neutral, technical debate that al-
lowed them to gain their authority in the " rst place. Debian developers at
times express their unease about the fact that delegates have the legitimate
power to make decisions without consulting other developers. This anxiety
is voiced indirectly through the humorous phrase “There is no cabal.” It is
manifested more critically when developers in positions of authority are
seen to violate what I call “meritocratic trust”— the expectation that en-
trusted guardians act in good technical faith and not for personal interest.

The building of trust and novel organizational procedures has been cen-
tral to the organizational growth of Debian as well as balancing its gover-
nance modes. These themes are recurrent in science and technology studies.
Whether expressed through the trustworthiness of a noble character, as was
the case in seventeenth- century British scienti" c enterprise (Shapin 1994), or
the transformation of books into transparent and vetted objects of truthful
knowledge (Johns 1998), trust has been essential to bringing coherence, or-
der, and stability to emergent social institutions, objects, and technical prac-
tices. Within F/OSS projects, issues of trust are no less pressing (Kelty 2005).
Questions of who and what to trust— whether delegates, voting procedures,
a piece of code, a license, or a guideline— are central to the repertoire of ethi-
cal practices that are the primary focus of this chapter.4

DE B I A N A N D IT S SO C I A L OR G A N I Z AT I O N

Debian is a project, made up of just over a thousand volunteers at the time
of this writing, that creates and distributes a Linux- based OS composed of
thousands of individual software applications. As is the case with most mid-
to large- size projects (i.e., those with over a couple of hundred developers),
Debian is extraordinarily complex and has undergone considerable changes
over the course of its history. In its nascency, Debian was run on an informal
basis; it had fewer than two- dozen developers, who communicated primar-
ily through a single email list. Excitement, passion, and experimentation
drove the project’s early development. In order to accommodate technical
and human growth, however, signi" cant changes in its policy, procedures,
and structure occurred between 1997 and 1999. Now Debian boasts an
intricate hybrid political system, a developer IRC, a formalized membership

1 2 8 C H A P T E R 4

entry procedure (the NMP), and a set of charters that includes the Constitu-
tion, Social Contract, and Debian Free Software Guidelines (DFSG). Debian
has produced detailed policy and technical manuals; controls development,
testing, and mirroring machines located around the world; and manages
bug- tracking and collaborative software. The project also publishes a news-
letter, hosts a group blog, and organizes an annual conference.

The bulk of the volunteer work for Debian has always consisted of soft-
ware packaging— the systematic compartmentalization, customization, and
standardization of existing software into one system. (In local lingo, Debian
is referred to as a distribution, the unit of software is called a package, and de-
velopers are often referred to as package maintainers.) Taken together, these
packages constitute the Debian Linux distribution. Along with the package
maintainers, teams of Debian developers support infrastructure and develop
Debian- speci" c software, while others write documentation or translate doc-
umentation into various languages. Each Debian developer has at least one
piece of software (and usually several) packages that they maintain.

Much of the work on Debian happens in an independent, parallel, dis-
tributed fashion through informal collaboration on IRC channels or mail-
ing lists, where developers ask for and receive help.5 Some collaboration is
mediated by bug reports. Written by Debian developers or users, bug reports
are " led on a publicly viewable bug- tracking system. Incoming reports can
identify a technical problem with a piece of software and provide crucial
details; they sometimes even supply the solution in the form of code to be
incorporated as a patch.

While a maintainer holds no legal ownership of the software they pack-
age, Debian’s norms of civility dictate that within the boundaries of the
Debian project, it is their responsibility alone. The assumption that main-
tainers enjoy near- absolute control over their software package means
that alterations should not take place without their explicit permission. If
modi" cations are needed to eliminate a release- critical bug or " x a secu-
rity problem, though, there is a socially accepted protocol for doing so: the
Non- Maintainer Upload (NMU). This mechanism is designed to allow a
nonmaintainer to upload a package in order to " x critical bugs, or com-
pensate for a busy or missing maintainer. While many developers appreci-
ate contributions provided by an NMU, seeing it as a handy mechanism
to encourage coparticipation, others " nd the protocol annoying or even
downright obnoxious insofar as it allows inexperienced developers to insert
shoddy solutions into their software. Other developers view it in a slightly
different light: as a means of exposing poor work. As one developer on IRC
told me half jokingly, an NMU reveals “our laundry for public inspection.”

If much of the project’s work occurs through individualized but parallel
efforts, work assumes a more collaborative and populist tone during the
period before the release of a new Debian version: bug- squashing parties
are held more regularly, and developers work round- the- clock on an IRC

T WO E T H I CA L M O M E N T S I N D E B I A N 1 2 9

channel to resolve what have been identi" ed as “release critical bugs” in the
bug- tracking software. During this period, which can last anywhere from a
few months to over a year, Debian’s release managers sanction NMUs with
much less stringent criteria, and they are correspondingly more frequent.6

Among the hacker and F/OSS publics, Debian’s fame rests on four
developments— two technical and two social. Technically, Debian is one of the
best- equipped distributions, offering more than twenty- " ve thousand individ-
ual pieces of software, all with DFSG- approved licenses. Debian, relatedly, can
currently run on eleven hardware architectures— more than any other Linux
distribution. This is one of the reasons it has earned the title of the “Universal
OS.” On the social side, Debian holds the distinction of having more individual
members than any F/OSS project. It is also known for its strong commitment
to the ethical principles of free software, as elaborated in two key documents—
the Social Contract and DFSG. These documents " gure prominently in the
NMP I discuss below. They are also the foundational texts that orient the proj-
ect’s sense of identity. Now let’s take a closer look at the Debian charters and
governing structures that have emerged in the last decade.

SO C I A L CH A RT E R S A N D GO V E R N A N C E

Dissatis" ed with the then- existing distribution and inspired by the Linux
kernel project, Murdock founded the Debian project in August 1993. He
attracted a group of volunteers, who began to design a package manage-
ment system that could integrate the contributions of every single devel-
oper who chose to maintain the package. I emphasize this point because it
marked an important shift in the history of the Unix collaborative ethical
temperament— one that explicitly honored transparency, accessibility, and
openness for the purpose of facilitating as well as encouraging participation.
It represented a new historical chapter in how hackers conceived of and
implemented meritocracy.

One longtime Debian developer, who came of age as a hacker well before
the Linux era, powerfully captured the spirit of this change in a short com-
ment he made during a Debian history roundtable at the Debian annual
conference. He described how collaboration on Unix proceeded before the
Linux era, at the University of California at Berkeley (and other locations)
where the Berkeley Unix distribution was partially developed:

There was a process by which you wrote some code and submitted
in the “I- am- not- worthy but I- hope- that- this- will- be- of- use- to- you
supplication mode” to Berkeley, and if they kinda looked at it and
thought, “Oh, this is cool,” then it would make it in, and if they said,
“Interesting idea, but there is a better way to do that,” they might
write a different implementation of it.

1 3 0 C H A P T E R 4

While the Berkeley Unix gurus accepted contributions from those who
were not already participating on the project, it was dif" cult to pierce
the inner circle of authority and become an actual team member. This,
from the point of view of the developers participating in the roundtable,
produced an unacceptable form of project participation, characterized by
a degraded elitism that failed to equalize the terrain on which develop-
ers could prove their worth. As I argued earlier, the F/OSS hacker system
of meritocracy compels individuals to release the fruits of their labor in
order to constantly equalize the conditions for production, so that oth-
ers can also engage in the lifelong project of technical self- cultivation
within a community of peers. When Torvalds and Murdock developed
their own projects (the Linux kernel and Debian, respectively), they did
things differently than the earlier cadre of Unix hackers by fostering a
more egalitarian environment of openness and transparency. Participa-
tion was encouraged, and recognition was given where it was due. Ac-
cepting more contributions was also, of course, seen as a way to improve
and encourage technical ef" ciency.

Murdock, who took on a great deal of the early work on Debian, acted as
the project’s leader. Debian in this sense was not unusual. Many of the early
free software projects worked and still work along this logic of informal
leadership by extension of a work ethic charisma (O’Neil 2009). Authority
and respect is established through the sheer amount of work one puts into
the project; participants in return offer their loyalty to it. But what crucially
distinguished Debian from earlier collaborative efforts was that everyone
who technically contributed to the project could potentially become a mem-
ber. By 1995, there was a software package system in place that harnessed
the power of individuality to produce a distribution that far exceeded the
contributions of any single person.

In 1996, Debian grew in size to 120 developers and released a version
of the OS that contained about 800 packages. Around this time, Murdock
passed on the reins of leadership to Perens, who along with a handful of
other developers, became responsible for the bulk of the project’s technical
work. Perens, already famous in the geek public sphere for both his pas-
sionate commitment to the principles of free software and desire to make
free software more visible in the business sector, had a marked impact on
the organization of Debian, in ways recalled as both positive and negative.7
Perhaps most signi" cant for my purposes here, Perens helped coordinate
the drafting of the Social Contract and DFSG, which were " rst suggested
by Schuessler.

The genesis of the Social Contract is worth brie2 y recounting, for it
reveals the explicit sense of responsibility and accountability to a larger
commonwealth of users and developers that has characterized the project
since its inception (when Murdock " rst articulated these values in “The
Debian Manifesto”). Schuessler proposed the idea for the Social Contract

T WO E T H I CA L M O M E N T S I N D E B I A N 1 3 1

after a conversation at a conference with Bob Young, the cofounder of a
then- emergent commercial Linux distribution, Red Hat. When Schuessler
suggested that Red Hat might want to guarantee in writing that as it grew
larger, it would always provide GPL software, Young replied, “that would
be the kiss of death,” implying that such an assurance made to the users of
free software could prove disastrous to his business, given that at the time,
the commercial future of free software was entirely uncertain. Schuessler
(himself a business owner) was both amused and disturbed by Young’s an-
swer, and with other developers at the conference, he decided that it would
behoove Debian to offer such a written guarantee.

If immediate inspiration for the Social Contract was a conversation that
brought to light two divergent interpretations of accountability to a wider
community of technical users, the time was quite ripe in Debian for users to
accept such a contract. As the project grew larger, many felt that the group
had outgrown “The Debian Manifesto.” Many developers felt it was espe-
cially important to clarify their position on free software, for there was a
small group clamoring to distribute nonfree software or risk losing users
to the other distributions that did so. Thus when the Social Contract was
proposed, it seemed like an ideal opportunity to clarify the project’s goals to
both outsiders and newcomers joining in large numbers.

Led by Perens, who wrote large chunks of the document, developers pro-
duced a statement of intent that helped de" ne Debian’s unique role within a
larger " eld of production. A crisp and short document, the Social Contract
makes four promises and gives one quali" cation:

“Social Contract” with the Free Software Community

Debian Will Remain 100% Free Software
We promise to keep the Debian GNU/Linux Distribution entirely

free software. As there are many de" nitions of free software, we in-
clude the guidelines we use to determine if software is “free” below.
We will support our users who develop and run non- free software on
Debian, but we will never make the system depend on an item of non-
free software.

We Will Give Back to the Free Software Community
When we write new components of the Debian system, we will li-

cense them as free software. We will make the best system we can, so
that free software will be widely distributed and used. We will feed
back bug- " xes, improvements, user requests, etc. to the “upstream”
authors of software included in our system.

We Won’t Hide Problems
We will keep our entire bug- report database open for public view

at all times. Reports that users " le on- line will immediately become
visible to others.

1 3 2 C H A P T E R 4

Our Priorities Are Our Users and Free Software
We will be guided by the needs of our users and the free- software

community.
We will place their interests " rst in our priorities. We will support

the needs of our users for operation in many different kinds of com-
puting environment. We won’t object to commercial software that is
intended to run on Debian systems, and we’ll allow others to create
value- added distributions containing both Debian and commercial
software, without any fee from us. To support these goals, we will pro-
vide an integrated system of high- quality, 100% free software, with no
legal restrictions that would prevent these kinds of use.

Programs That Don’t Meet Our Free- Software Standards
We acknowledge that some of our users require the use of programs

that don’t conform to the Debian Free Software Guidelines. We have
created “contrib.” and “non- free” areas in our FTP archive for this
software. The software in these directories is not part of the Debian
system, although it has been con" gured for use with Debian. We en-
courage CD manufacturers to read the licenses of software packages
in these directories and determine if they can distribute that software
on their CDs. Thus, although non- free software isn’t a part of Debian,
we support its use, and we provide infrastructure (such as our bug-
tracking system and mailing lists) for non- free software packages.

This charter is a strong statement of intent concerning Debian’s role,
commitments, and goals, declared notably beyond the Debian project to
the users of this distribution. It elevates the virtues of transparency and ac-
countability, and seeks to foster a commonwealth that upholds the produc-
tion of free software and the pragmatic needs of users. Although the charter
af" rms a well- de" ned moral commitment to free software and a community
of users, it also formulates, in its last provision, the pragmatic limits to such
“ideological” adherence, sanctioning to a limited degree the use of nonfree
software by providing a place for it. In part, this decision re2 ected the state
of free software during the period when the Social Contract was composed
as well as an existing desire to ground Debian’s shared moral commitments
within technical pragmatism. At the time the charter was drafted, there were
a number of important software applications like browsers and word pro-
cessors that simply had no robust free software equivalent. For example,
while Netscape existed and was free as in beer, it was not free as in speech;
the source was unavailable for use, modi" cation, and circulation.

Following the creation of free software equivalents to these programs
over the years, Debian has routinely debated dropping its support of non-
free programs; this has even led to a “General Resolution” (resolutions are
voted on by the entire project) to eliminate such programs. A resolution
in March 2004 reaf" rmed Debian’s commitment to this provision, though
given the voluminous debate it generated, it is an issue that I imagine will

T WO E T H I CA L M O M E N T S I N D E B I A N 1 3 3

be revisited again in the near future. Drawing the line between pragmatism
and utility, on the one hand, and ideological purity, on the other, is a task
that Debian developers are constantly struggling with, as we will see later
in this chapter.

The DFSG is the legal corollary to the Social Contract. For a license to
meet the standard of free, it must meet the following criteria:

 1. Free Redistribution
The license of a Debian component may not restrict any party from
selling or giving away the software as a component of an aggregate
software distribution containing programs from several different
sources. The license may not require a royalty or other fee for such sale.

 2. Source Code
The program must include source code and also allow distribution in
source code as well as compiled form.

 3. Derived Works
The license must allow modi" cations and derived works, and must
allow them to be distributed under the same terms as the original
software’s license.

 4. Integrity of the Author’s Source Code
The license may restrict source code from being distributed in modi-
" ed form only if the license allows the distribution of patch " les with
the source code for the purpose of modifying the program at build
time. The license must explicitly permit the distribution of software
built from modi" ed source code. The license may require derived
works to carry a different name or version number from the original
software.

 5. No Discrimination against Persons or Groups
The license must not discriminate against any person or group of
persons.

 6. No Discrimination against Fields of Endeavor
The license must not restrict anyone from making use of the program
in a speci" c " eld of endeavor. For example, it may not restrict the
program from being used in a business or for genetic research.

 7. Distribution of License
The rights attached to the program must apply to everyone to whom
the program is redistributed without the need for execution of an ad-
ditional license by those parties.

 8. License Must Not Be Speci! c to Debian
The rights attached to the program must not depend on the pro-
gram’s being part of a Debian system. If the program is extracted
from Debian, and used or distributed without Debian but otherwise

1 3 4 C H A P T E R 4

within the terms of the program’s license, all parties to whom the
program is redistributed should have the same rights as those that are
granted in conjunction with the Debian system.

 9. License Must Not Contaminate Other Software
The license must not place restrictions on other software that is
distributed along with the licensed software. For example, the license
must not insist that all other programs distributed on the same me-
dium must be free software.

The DFSG both generalizes and speci" es the GPL’s four freedoms (access,
use, modi" cation, and distribution). It generalizes them so that the DFSG
can act as a pragmatic standard to determine the relative “freeness of a
license” or as the baseline to create a new license. At the same time, it speci-
" es the meanings of freedom, largely by including an explicit language of
nondiscrimination— one of the document’s most salient themes. The DFSG
has been assiduously excavated for discussion and debate on Debian legal
and other mailing lists to help developers decide whether a piece of software
they want to package and maintain has a DFSG license, or what changes to
an existing license need to be made to make it DFSG free (to be explored in
the next chapter).

Along with these two seminal documents, Debian also has an explicit
Constitution, which was drafted after a failed " rst election and in an ef-
fort to prevent the type of authoritarian leadership that some developers
identi" ed with Perens.8 The Debian Constitution outlines in great detail
the group’s organizational structure, which includes nonelected and elected
roles and responsibilities. Contained within this document is a representa-
tion of Debian’s overall system of governance— its combination of majori-
tarian democracy, meritocracy, and ad hoc consensus.

Debian’s democratic commitments are apparent in its voting protocols.
Using a version of the Condorcet method (which guards against simple ma-
jority rule by means of a complicated ranking system), the project now votes
every year for the Debian project leader, and any developer can propose a
General Resolution relating to technical, policy, or procedural matters for a
projectwide vote. These two provisions demonstrate the populist commit-
ment to give all developers a voice, and acknowledge that regardless of their
level or quality of contribution, all developers, once accepted into the proj-
ect, deserve some decision- making in2 uence. That said, the Debian project
leader has assumed a decidedly nontechnical role, not vested with power
to make technical decisions for the project at large, and proposing General
Resolutions to resolve technical disputes is fastidiously discouraged. Strictly
technical problems are not seen as appropriate objects for democratic voting.

For instance, in 2004 when one developer proposed a technically based
General Resolution (calling for the support of a new architecture), this sug-
gestion was ripped to shreds on the mailing lists and effectively halted by
many contributors, including some of the most respected and visible Debian

T WO E T H I CA L M O M E N T S I N D E B I A N 1 3 5

developers. One response conveyed the distrust of political inclusion within
the technical arena that many developers hold and will consistently give
voice to: “I won’t even consider this proposal until you or someone else
explains to me why we should use the voting system to decide an issue like
this. [. . .] If recent experience has shown us anything, it’s that votes HURT
Debian. Please don’t take us further down this path.” Voting, in other words,
blocks open and ongoing debate, the proper and most popular means by
which technology should be revisioned and improved.

If the Debian project leader is not a technical position, then what is that
person empowered to do? Most developers agree that the project leader
acts as a public spokesperson at conferences and other events. Within the
Debian community, the project leader acts to coordinate and facilitate dis-
cussion, perhaps most vitally opening blocked pathways of communica-
tion and aiding in con2 ict resolution. Their most signi" cant power lies in
the ability to assign or legitimate nonelected of" cial roles in the form of
delegates and teams— typically technical guardians, who garner respect
because of their superior talents and dedication to the project. These teams
and delegates perform much of the Debian- wide work, such as administer-
ing mailing lists, accepting new members, running votes, and maintaining
and integrating new software into the master archive. There is general
faith that the Debian project leader either legitimates teams already in
existence because of the work they do or assigns roles to people already
doing the work.

If it is incumbent on developers to make decisions, there are nonetheless
types of developers empowered with special authority to make certain kinds
of decisions, usually by virtue of holding nonelected posts as individual del-
egates, or within teams or committees.9 While the Debian project leader
can assign a Debian developer as a delegate, and in theory is empowered to
revoke any existing position, this action has never been taken within the last
" ve years and possibly ever. This is signi" cant. While in theory the project
leader or a General Resolution can revoke the position of a technical guard-
ian, in practice this would never happen. Guardianships are vetted positions,
and there is strong pressure to let these people remain in their positions so
long as they are doing work and desire to remain there.10

These positions are largely technical in nature. Current teams include the
release manager and team, listmasters, Webmasters, Debian admin team,
NMP team, security team, and policy team. These teams coordinate in or-
der to work on larger- scale infrastructural or organizational structures as
well as procedures. Important among these individuals are the FTP masters,
who existed before there were Debian project leaders assigning teams; they
review by hand all new submitted pieces of software packages for technical
and licensing glitches, and integrate them into the “master archive.”11

I was repeatedly told that those who hold these nonelected positions do
so because they initially undertook the work necessary to accomplish the
tasks of the position. For example, some FTP masters hold their position

1 3 6 C H A P T E R 4

because they coded the software used to handle package uploads and veri" -
cation, or the package repository software. Power, in other words, is said to
closely follow on the heels of personal initiative and its close cousins: quality
technical production and personal dedication to the project.

Even if most developers prefer meritocracy to democracy— in fact, nearly
every developer interviewed stated with pride that Debian is meritocratic—
this form of power is nonetheless shrouded in some level of distrust. Posi-
tions of authority, like the FTP masters, undeniably represent a form of
centralized and potentially lifelong authority, potentially subject to corrup-
tion or— just as dangerous— knowledge specialization and hoarding. Hack-
ers generally tend to honor decentralization and the distinct power of the
individual to trump authority, so any centralized authority is bound to act
as a lightning rod for re2 ection and debate.

There is a more speci" c reason for distrust, though. To fully appreciate
the texture of controversies that emerge over authority, we must revisit the
argument laid out earlier. Debian developers operate within a social imagi-
nary rooted in a Millian conception of liberal individualism that requires
them to cultivate their skills, improve technology, and prove their worth
to other hackers within their elite fraternity. Figures of central authority,
such as team members and delegates, represent a potential threat to the
conditions for this perpetual process of technical self- fashioning. As Donner
(1991, 152) maintains in her discussion of Mill’s model of self- development,
those who gain authority because of merit nonetheless “can only act as
guides to others,” never as “authorities”; if they attempt to impose “judg-
ments of value on others,” this “paradoxically undermines that claim to de-
velopment.” Everyone, not a select order of people, must be able to exercise
their capacity for thought, discrimination, and critical intervention, and at
all times.

The anxiety that power could potentially corrupt those who enjoy privi-
leges and block conditions for public self- development (by making choices)
as well as institute a rigid form of vertical authority emerges from time to
time, although in a less coherent and sustained fashion than the critiques
of Debian’s democratic elements. It is far more common to joke about the
existence of what is called the cabal, usually stated as a denial: “There is
no cabal.” Long before Debian existed, this was a running joke on Usenet,
where a similar discomfort over the potential for corruption by meritocratic
leaders played out (Pfaffenberger 1996).12

In Debian joking enjoys a wide purview, and playful joking about the ca-
bal is littered everywhere. For example, the evening before the 2005 Debian
project leader winner was to be announced, a group of developers, including
a project leader candidate and the release manager, casually slipped jokes
about the cabal into the discussion, unprompted by anything except the an-
nouncement by the project secretary that there were twenty- four hours to go
until the voting period was over:

T WO E T H I CA L M O M E N T S I N D E B I A N 1 3 7

<markel> less than 24 hours to go
<crawlspace> cue sinister music
<mickmac> I expect it all to be a conspiracy
<mickmac> The cabal will already have chosen their candidate
<jabberwalkie> mickmac: Nah, there’s still time; got your last- minute

bribes ready? ;)
<mickmac> JabberWalkie: Well, uh, no.
<mickmac> Damnit.
<jabberwalkie> mickmac: Better luck next year. :)
<mickmac> I can offer you beer if you come to Debconf?

*vapor- b shakes his ! st at the cabal

Developers use cabal humor to express chronic anxieties about the general
corruptibility of meritocracy and their distrust of top- down authority. More
speci" cally, it points to the way Debian “must reconcile the central notion
of each developer’s autonomy [. . .] with the constraints deriving from the
complex system with quality standards of the highest order,” as Mathieu
O’Neil (2009, 134) has so aptly put it. Most of the time, these jokes are
playful. They work like a safety valve to diffuse tension, and are used as a
creative and oblique reminder to those in positions of authority that their
intentions must be transparent for them to receive the continued trust of the
developer population.

At other times, developers couch discussions of the cabal as accusations,
seeking more trustworthy behavior from meritocrats, which is usually ex-
pressed in claims for greater transparency, accountability, and accessibil-
ity. In the recent Debian project leader debate, for example, one developer
wrangled with an FTP master over what could be done to increase the proj-
ect’s transparency and equalize the access conditions. The developer invoked
the specter of the cabal:

I see Debian as a meritocracy, and the way to receive privileges is to
contribute and be pro- active. However, it cannot be the goal to expect
from willing users to " gure out everything about a job all by them-
selves prior to being able to gain recognition for the contributions they
make— if they are lucky enough to be considered useful by current
holders of the position strived for. If this is actually intended, then it is
highly inef" cient. If it is not intended, then maybe Debian wants to do
something about it, and if not only to stop cold those rumours about
an alleged cabal.13

This developer felt that Debian developers could do more to increase
transparency in order to facilitate and encourage participation from new
members. Many of the developers he was arguing with (those in positions
of power) disagreed, saying that there was enough transparency and that it
was incumbent on interested members to take responsibility for their own

1 3 8 C H A P T E R 4

self- education, independent of the help of others. This is conveyed in the
email below, where one FTP master responded to the claim that Debian
policy and organization is too obscure:

> What you fail to see is that there is something daunting about
> a project of this size and complexity to those who are trying to
> understand it top- down, rather than having been part of building it
> bottom- up.

What you fail to see is that the bits are available and that you “only”
have to build the large picture. If you’re too lazy to do so, it’s not the
job of the people working on essential corners of the project to edu-
cate every random Johnny Sixpack for the sake of it.14

Even when there is pressure to equalize the conditions for access, which is
manifested in jokes about the cabal, equalization within a meritocracy, as I
discussed in chapter 3, must proceed by speci" c methods. Many (though not
all) developers feel that if too much help is given to newcomers, it will un-
dercut their ability to prove their worth and intelligence within a group that
values precisely this sort of performance of self- reliance. The line between
the equalization of conditions and too much assistance is constantly being
negotiated in Debian, and perhaps more so than in other projects because
of its populist bent.

Debian’s meritocratic guardians " nd themselves in a paradoxical position
with respect to hackers who accord tremendous weight to liberal individual-
ism, especially constant acts of technical self- fashioning and the open- ended
process of nonpartisan technical debate. Granted the authority to act with-
out the community’s prior consent, the guardians rarely can do so without
displaying good and pure intentions. In this way, these developers, much like
the early natural philosophers of Britain’s Royal Society studied by Steven
Shapin (1994), must constantly garner the trust of peers through the perfor-
mance of character virtues and other related acts.

If the natural philosophers of the Royal Society displayed good faith
through a combination of humility, detachment, generosity, and civility, how
do the meritocratic guardians of Debian perform their good intentions and
navigate this dilemma? Delegates and teams manifest their pure technical
intentions through a wide range of practices (and humility is not always one
of those, although it certainly can be). Many can display their intentions
simply through ongoing technical work— a form of labor that speaks to
their unwavering commitment to the project. They are supposed to com-
municate openly with developers, and in some periods, developers voiced
their dissatisfaction by clamoring for more transparency and accountability
from a few of the delegates. These arguments follow a predictable arc: some
developers complain about a lack of transparency among the guardians;
on the other hand, the guardians feel suffocated under the weight of their

T WO E T H I CA L M O M E N T S I N D E B I A N 1 3 9

obligations, so that the work necessary to communicate and increase the
transparency of the role becomes an impossible, unnecessary additional bur-
den; then the developers will offer to help share the workload; and typically
the guardians’ exasperated response is that integrating and training new
people would require more work than they can take on, or the developers
need to take the initiative themselves.

Nonetheless, there are some established routines for increasing the vis-
ibility and transparency of different working groups, including emails sent
out to all developers on the debian- devel- announce mailing list (a required
subscription for developers) that summarize the most recent activities of
the different technical teams. These informal updates are sent periodically
to project members and forge a connection with the body politic of Debian.
One former FTP master, James Troup, known more for his technical prow-
ess and dedication than for his communicative access, once sent such a
status report titled “Bits from the FTP Master Team” after there had been
several months of debate on the mailing lists about the opacity of the FTP
master’s exact role and complaints that the FTP masters were becoming
roadblocks to the project in failing to ful" ll their duties. His email, drafted
by a number of team members, announced the addition of new members to
the team and provided some clari" cation over the exact responsibilities of
each member. Following this information, Troup and the other FTP mas-
ters ended the email with a humorous, bitingly sarcastic remark that as-
serted their goodwill while discounting the complaints as overblown: “We
hope this has made your day more pleasant, and your nights less " lled with
the keening wails of the soulless undead.”15 Its ironic and sardonic subtext
is clear: Troup has heard and registered the complaints, is humored that
people thought that the situation was so hellishly torturous, and is reveal-
ing that there is nothing to worry about, because he is acting in good faith
and this unnecessary email serves as his merciful act of grace releasing souls
from the unbearable suffering that they were experiencing.

Along with consistent communication, delegate technical proposals must
be carefully framed to re2 ect project and not personal goals. In many in-
stances, it is imperative to let certain decisions be made through an ad hoc,
consensual process in which the merit of the outcome emerges via a pro-
cesses of collective debate rather than as a mandate from those with vested
authority (even if the outcome falls entirely within their purview).

An interesting site to examine is the committee invested with the greatest
technical power: the Technical Committee. Its role is de" ned in the Consti-
tution as “the body which makes the " nal decision on technical disputes in
the Debian project,” and its members perform their good intentions largely
by way of inaction.16 In the period during which I followed Debian (2000–
2005), for instance, this committee rarely exercised its authority.

A hands- off approach is thus how committee members establish their
good intentions toward the very process that afforded them the right to

1 4 0 C H A P T E R 4

become part of the Technical Committee. It re2 ects the general ideal that
those in authority should " rst defer to the developer community so that
differences of opinions can be solved through debate and consensus. The
Technical Committee Web site enunciates this notion clearly under the head-
ing “Some Caveats about Contacting the Committee”: “A sound and vigor-
ous debate is important to ensure that all the aspects of an issue are fully
explored. When discussing technical questions with other developers you
should be ready to be challenged. You should also be prepared to be con-
vinced! There is no shame in seeing the merit of good arguments.”17

The argumentative consensus advocated by the Technical Committee is
the third mode of governance in Debian— a mode that is understood as a
form of self- governance because it stems from the debate, contributions, and
actions of independent- minded, consenting individuals. A tremendous faith
is placed in the power of what might be called “technical rhetoric” to con-
vince others of the logic of decisions that have been made. Technical rhetoric
is about technical work, and frequently includes a presentation of the code,
a corollary written statement, or a justi" cation as to why no change should
be made.

These debates happen on IRC, bug- tracking software, and mailing lists;
on IRC, the process of argumentation is informal. Developers usually seek
the advice of others and move on to do the work. Many times such ad-
vice seeking produces robust debate, and when there are especially pro-
nounced differences of opinion, this transforms civil heartiness into vibrant,
sometimes- vicious 2 ame wars— outbursts of dissent that are character-
ized by in2 ammatory language or direct accusations of incompetence. The
Debian bug- tracking system is another site where technical jousting hap-
pens, and since there is a formal system that allows developers to rate bugs
according to a spectrum of severity from a wish list to severe, these debates
can be tracked more systematically. The attention a given bug received can
be easily tracked by the length of debate contained therein along with the
multiple reassignments of different levels of severity, closing, and reopening.
Some bug debates have reached legendary status because of multiple reas-
signments of severity, their length, and their lack of closure. It is often during
such contestations over technical questions that developers most explicitly
raise issues of authority, and renegotiate the lines between democracy, con-
sensus, and meritocracy that de" ne their system of governance.18

TW O MO M E N T S O F ET H I C A L CU LT I VAT I O N

In terms of governance alone, Debian exhibits an extraordinarily complex
moral and technical environment. It should come as no surprise that the
way new members integrate themselves within this community, and learn the
proper codes of conduct and procedures by which to contribute effectively to

T WO E T H I CA L M O M E N T S I N D E B I A N 1 4 1

the project as well as gain the trust of other developers, is not a simple one.
Although many prefer coding over organizational building, Debian develop-
ers have nonetheless concocted an interesting social solution to this problem
of integration and trust building— the NMP. This process addresses problems
following from growth: how to build trust and encourage accountability in
the space composed solely of bits and bytes along with a growing number of
participants.

Building Trust through the NMP

Essentially a gateway for new members, the NMP de" nes what is morally
and technically expected of them. As such, it works powerfully as a cen-
tripetal force of ethical enculturation. It is the framework within which
new members " rst confront the sociopolitical and organizational milieu of
Debian. This process represents the " rst time that some new members meet
another Debian developer in person or “ethically voice” their commitment
to free software through the proli" c writing that is required of them.

Already explicitly committed to a vision of free software, Debian is to
some degree a self- selecting organization, unlikely to attract programmers
with a staunch commitment to upholding the current status of intellec-
tual property law. But the NMP is unique insofar as it requires prospec-
tive Debian developers not only to study detailed texts on the ethics of free
software (such as the GPL, Social Contract, and DFSG) but also to produce
their own texts on the subject. Through the NMP, developers produce ethi-
cally relevant discourse. The extensive narrative work of the NMP makes
Debian’s codi" ed values personally relevant, and this in turn breeds social
commitment to the project.

As Debian grew quickly, the project found itself in the midst of a crisis
that peaked between 1998 and 1999. New members were being admitted
at rates faster than the project’s ad hoc social systems could integrate them.
Some longtime developers grew skeptical of the quality of incoming devel-
opers, complaining that they introduced more bugs into the system than
helpful contributions. The populism of open membership began to come
under attack. Some developers suggested that Debian had reached its satu-
ration point.19

In response to these problems, the Debian account manager (who creates
accounts for new members) waged a silent revolt by halting the processing
of new maintainer accounts— essentially preventing any new members from
being able to join the project. This move eventually led the account manager
to of" cially stop accepting members under the informal procedures. Instead,
the manager proposed formalized procedures that could systematically en-
sure the trustworthiness of new members as members of the community.

The procedure developed was Debian’s NMP. First presented in Octo-
ber 17, 1999, as a proposal on a mailing list, its preamble (quoted below)

1 4 2 C H A P T E R 4

indicates that the “growing pains” Debian had been experiencing were not
merely technical but also ethical. A small group of developers had been
clamoring to loosen the commitment to free software and integrate nonfree
software in order to be competitive with commercial distributions whose
ethical commitments were less stringent. Even though the constitutional
charter was already established, the spirit of free software was seemingly
losing its potency with the addition of each new wave of developers. The
Debian project leader listed the following criteria by which to select new
members, and note that the " rst line is intentionally repeated:

— needs to have a *strong* oppinion [sic] for free software
— needs to have a *strong* oppinion [sic] for free software
— he needs to be able+willing to make long distance phone calls [for

an interview]
— He needs to know what he’s doing, that new people need some

guidance,
we have to prevent ourselves from trojans etc.
— we need to trust him— more than we trust *any* other active person
— He *has to* understand that new- maintainer is *more* than

just creating dumb accounts on n [n being a numerical variable]
machines

Out of this initial proposal and the establishment of an NMP team, the
NMP created a standard that all developers must meet. The NMP is struc-
tured not only as a test but also as a process for learning, mentoring, and
integrating prospective developers into the project by making them work
on packaging a piece of software closely with at least one older, “trusted,”
project member.

Before prospective developers formally enter the NMP, they are " rst
asked to identify the contributions they plan to make to Debian. They are
encouraged to demonstrate their commitment to the project, express why
they want to join, and display some level of technical pro" ciency. For most
developers, this involves making a software package and— because only ex-
isting developers can integrate a piece of software into the larger GNU/
Linux distribution— " nding an existing developer to “sponsor” their work.
New maintainers work closely with their sponsors, who check their work
for common errors and take partial responsibility for the new maintainer.
This supervision is important, because in addition to gaining technical skills,
the new volunteer begins to participate in the project’s social sphere. Pro-
spective developers are encouraged to join mailing lists and IRC channels
that provide the medium for technical as well as social communication.

A new maintainer’s sponsor often acts as the new applicant’s advocate
when the maintainer applies for project membership. Advocates are exist-
ing developers who vouch for new developers along their history of and
potential for contributions to the community. Early in the NMP, the issue

T WO E T H I CA L M O M E N T S I N D E B I A N 1 4 3

of establishing trust is crucial. After the applicant’s advocacy has been
approved, that person of" cially becomes part of the NMP, and then an ap-
plication manager is assigned to guide the new developer through the re-
mainder of the process. It is this manager who handles the rest of the process
by acting simultaneously as a mentor, examiner, and evaluator. While it is
certainly the case, as phrased condescendingly by one Debian developer, that
a “village idiot can’t join Debian,” this mentorship is the NMP’s implicit
concession to the limits of a meritocratic imperative that would otherwise
require a person to prove their worth entirely on their own.

The NMP includes three steps and requires considerable work on the
part of applicants. The process is used to con" rm the new maintainers’ iden-
tity, knowledge and position on free software philosophy, and pro" ciency
with the established Debian policies and procedures as well as their overall
technical expertise and knowledge.20

The identify veri" cation is accomplished by obtaining the cryptographic
signature of at least one existing Debian developer on their personal GNU
privacy guard key. This key is encrypted with a pass phrase that is known
only to the person holding that key. When properly unlocked with the pass
phrase, a signature can be generated, and that signature can then in turn be
attached to a particular email message, text, or piece of software. With an
attached signature, it is proof that it originated from the person possessing
the key. When key owners meet in person, they establish their identity to
each other by exchanging pieces of government- issued picture identi" ca-
tion and the key " ngerprint, which uniquely identi" es the key itself. Hav-
ing traded and veri" ed this information, developers later place their unique
cryptographic signature on each other’s keys to con" rm to others that they
have connected the key being signed with the individual in possession of
those identity documents. This is a process of identity veri" cation that can
then be used over the Internet to con" rm, with certainty, that an individual
is who they say they are.

By requiring new developers to obtain the signature of an existing
Debian developer, the NMP integrates them into what they call a crypto-
graphic “web of trust.” Because nearly every hacker within Debian has a
key signed by at least one existing developer, and because many developers
have keys signed by numerous others (the stronger the connected set of
signatures is, the more trustworthy it is considered), nearly all maintain-
ers are connected. Debian can use cryptographic algorithms to prove that
most every developer met at least one other developer, who in turn met
at least one other developer, and so forth, until every developer is linked.
Debian’s administrative software depends heavily on these keys to identify
users for the purposes of integrating software into the distribution, for
controlling access to machines, allowing access to a database with sensi-
tive information on developers, and restricting publication to announce-
only email lists.

1 4 4 C H A P T E R 4

The importance of meeting in person to sign the keys is illustrated in
the following anecdote, which begins with the controversial claim of one
Debian developer:

I have a potentially controversial thesis. My thesis is that the “Raul Miller”
who is a Debian Developer and sits on the Technical Committee (and was,
for a time, its chairman) doesn’t actually exist.
You see, Mr. Miller joined the project before we had the current procedures
for vetting developers’ identities, and even before we had the semi- informal
ones under which I myself was admitted to the project in 1998. Interestingly,
there are no signatures on Mr. Miller’s PGP key other than his own. A re-
markable accomplishment for someone who’s been with the project this long,
but not so surprising for someone whom no other developer has, as far as I
can tell, ever claimed to have met in person.21

When it became clear that Miller, who occupied a crucial technical posi-
tion in the project at that time, was outside the web of trust, there was such
alarm that within three days, two developers drove to meet the individual
in question and succeeded in bringing him into the cryptographic network.
The developers’ strong reactions demonstrated the essential nature of these
infrequent face- to- face interactions and signi" cance of verifying the identity
of one of their technical guardians.

Integration into Debian’s web of trust is thus a vital " rst step in new
maintainers’ integration into the Debian project. This process connects and
leads into the second and often most rigorous part of the NMP: philosophy
and procedures. The " rst part of the application requires that new maintain-
ers provide a declaration of intention, a proof of some contribution or skill
they could bring to the project, and undergo the philosophy and procedure
testing, which includes a biographical narrative of why and how they be-
came involved in free software and Debian.

During this philosophy step in the NMP, application managers ask pro-
spective developers a series of questions regarding free software and Debian
philosophy. While general knowledge of the de" nition and philosophy re-
lated to F/OSS is essential, the questions revolve around Debian’s Social
Contract and DFSG. New maintainers are asked a series of questions— some
culled from a standard template, and others created anew— to demonstrate
their familiarity with these documents, ability to apply and synthesize the
concepts encapsulated within them, and capacity to articulate their agree-
ment with as well as commitment to the Debian ideals.

Although each new maintainer must agree to the Social Contract, the
philosophy test does not require developers to hold a homogeneous view
on free software. Rather, it seeks to ensure that all Debian developers are
knowledgeable about, interested in, and dedicated to its basic principles.
Open- ended questions frequently turn into longer email conversations

T WO E T H I CA L M O M E N T S I N D E B I A N 1 4 5

between application managers and prospective developers in which the
subtleties about licensing along with free software philosophy are dissected.
While I have heard some developers complain of the “wait” and “bureau-
cracy” introduced by the NMP, or even the absurdity of some of the techni-
cal questions, I have never heard an objection levied against this part of the
application. In fact, most developers recall the philosophy section as enjoy-
able and rewarding.

In particular, the initial biography allows developers to take an inven-
tory of their technical past, in a way that starts to imbue it with a decidedly
ethical dimension. It is worth quoting large blocks of an application here to
offer a sense of the remarkable detail and nuance of these writings. Below I
quote a short section from a developer answering the biographical question:

This is my story about free software: In the " rst times I was excited by the
idea of something to which everybody could contribute, just like that In-
ternet that I was discovering at the same time. I could also see that it had a
future, because of that part that said that all the contributions would remain
free. Wow! At the same time, I was seeing many closed softwares rise and
fall (DOS, Windows 3.x, OS/2, compiler environments, BBS software, Of-
" ce suites, hardware drivers, proprietary format backup suites, whatever),
and everytime they got superseded by some other thing, support fell, bugs
remained un" xed, data became unreadable and nobody could do anything
about it except spending lots of time and resources relearning everything and
porting or even restarting their works from scratch. [. . .]
I realized that Free Software was and is the only thing that potentially allows
you to be free of the risks that (usually silly) external events pose on your
know- how and on the software that you depend on. [. . .]

This is about me and my time for Debian:
Between " ve and six years have passed running Debian, and my experience
with it has grown. I got used to the Debian phylosophy [sic], did some experi-
ence with the BTS [bug- tracking system], read some mailing lists, the DWN,
got curious and somewhat knowledgeable on how Debian works, read pages,
policies, discussions, I even went to the LSM and Debian One. [. . .]
The packages that I used to create, however, were not perfect, and I would
have needed to better study the various Debian policies and manuals to do
some better job. Willing to do that, I thought it was silly not to become an
of" cial maintainer, and start contributing to the project myself, so that others
could take advantage of that knowledge I was about to acquire.

The " rst section usually sticks to a standard technical life history, gesturing
toward the ethical uniqueness of F/OSS, yet it is told in a mode hinged to
practical life experiences with technology. Often told in a confessional tone,
such essays are as much a biography about not only one’s own discovery

1 4 6 C H A P T E R 4

of this speci" c project but also how one arrived at the principles upheld in
Debian itself.

The philosophy aspect of the philosophy and procedures section also cov-
ers the Social Contract and DFSG, and it is here where the ethical voicing
becomes strikingly pronounced. In contrast to the descriptive register of the
biographical section, here prospective developers are required to formulate
their personal views on free software, moving from personal experiences
toward re2 ective generalizations regarding the legal and ethical principles
they are committing to in joining this project. Let me " rst share the text
before commenting on its implications. Below is an excerpt from a differ-
ent application than the one quoted above. This applicant, responding to
the question “Please explain the key points of the Social Contract and the
DFSG— in your own words,” remarks:

The Social Contract is the commitment the Debian project makes to its mem-
bers and users. It is about fostering a community so committed to software
freedom, so open, and so supportive that no one would have need to go
elsewhere. Debian’s members and users bene" t from the fact that Debian is
completely free software and that nothing in the Debian process is hidden
from them.
Debian also provides an outlet for new free software and a “channel” for
contributing changes back to the original developers. It also takes the re-
alistic view that some users may still be using non- free software and that
providing this software actually helps Debian’s users and indirectly the free
software community.
The Debian Free Software Guidelines is the set of concrete rules that help de-
termine if a piece of software complies with the Social Contract and the Proj-
ect’s goals. The rules in the DFSG are chosen to make sure software accepted
into Debian maintains the user’s freedoms to use, distribute, and modify that
software now and forever. This is not just for Debian’s users but anyone who
might take software in Debian and modify it, create CDROMs, or even create
a derivative distribution. [. . .]
> Also, describe what you personally think about these documents.
The Social Contract and the DFSG represent a very unique idea. In this day
and age where society (at least in the US and some other " rst world coun-
tries) encourages individualism and tries to divide the people and control
them it is very refreshing to read the Debian Social Contract. Proprietary
software made by commercial software companies/developers is exactly
that, commercial. Those companies/developers are only about pro" t or ad-
vancing their agenda and will do what they need to in order to maximize
that. Often this con2 icts with doing the right thing for the user and here
are some examples,
— If a company/developer sells a piece of proprietary software that, as all
software does, has bugs and they also sell incident based support contracts
then what incentive do they have for " xing bugs in the software?

T WO E T H I CA L M O M E N T S I N D E B I A N 1 4 7

— If a company/developer’s revenue stream is based on selling new versions
of their proprietary software, what incentive do they have for " xing bugs in
the old one rather than forcing users to pay for a new upgrade they may not
want. [. . .]
— Imagine a company/developer that develops a proprietary application that
initially meets the users needs so well and is priced reasonably that they gain
a monopoly on the market. With the competition gone they can raise their
prices or bundle additional unwanted applications into their software, or do
pretty much anything they want.
— Now imagine a company/developer that uses that monopoly in one market
to gain entry and into other markets and attacking users’ freedoms in those
as well.
In all these examples the company/developer bene" ts at the expense of the
users.
In order to prevent situations like this one of the things the Social Contract/
DFSG effectively says is this,
“Our users are so important to us that we are setting these ground rules to
protect their freedoms. If you can develop software that meets these rules
then not only do we invite you to include it in Debian, but we accept you into
the our community and will expend our resources to distribute your soft-
ware, help keep track of bugs it may have and features that could be added,
and help you improve and support it.”
In addition to that statement several of the DFSG’s clauses have the effect of
saying,
“We are so committed to doing the right thing and working together with
anyone in an open manner to resolve differences and always do the right
thing for the users that we’re willing to let you have all the work that we’ve
done. You can do whatever you wish with it as long as you obey the original
author’s license.” [. . .]
These are very powerful ideas that can’t be taken away or subverted by some-
one who wants to extort or control users. Personally, I think my interest in
getting involved with Debian is an extension of my overall views and this is
the only way that I want to use and develop software.

While the content of this narrative certainly matters, I want to stress
the type of ethical labor being produced by this text. The developer takes
the vision ensconced in the Debian charters and adds value to it in numer-
ous personalized ways: he reformulates its key principles in his own words;
to hone down his points, he makes a fairly sophisticated contrast between
proprietary and free software development largely along the ethical lines
that matter to him— transparency, openness, and accountability; and he poi-
gnantly concludes with a succinct commitment to this style of development.

What we see here with these applications is what Cover, in his discussion
of a nomos, describes as a simultaneous process of subjective commitment
to and objective projection of norms, or a bridging that emerges out of a

1 4 8 C H A P T E R 4

narrative mode. “This objecti" cation of the norms to which one is com-
mitted frequently,” Cover (1993, 145; emphasis added) observes, “perhaps
always entails a narrative— a story of how the law, now object, came to
be, and more importantly, how it came to be one’s own.” This is precisely
what occurs during the NMP. Developers af" rm their commitment to the
principles enshrined in their key charters largely by way of a speci" c gravi-
tational pull: the force of their life experiences is brought to bear directly on
these documents, thereby rendering them objectively real, but in a way that
subjectively matters within one’s personal orbit of life experiences. This is
followed by a second move, which betrays subjective personalization. De-
velopers voice the broader importance of these principles and clarify the
social implications of their commitments. Neither purely subjective nor ob-
jective accounts, these narratives form a bridge between them.

Moreover, the narratives are at the basis of temporal movement and per-
sonal transformation. They take people to new locations, and past, present,
and future come together in a moment of ethical assessment. The past is
weaved into the present, and the voicing of commitment in the application
becomes the path toward a future within the project. It is a step that brings
a developer closer to a new social localization within a larger ethical and
technical project of developers who have also undergone the same re2 ective
exercise.

Through this recon" guration of temporality, developers after the NMP
can be said to share at least three connections: they are technologically
linked through the web of trust that requires them to meet at least one
other developer; they share the experience of a common ritual of entry; and
" nally, they have started to learn a Debian- speci" c vocabulary with which
to situate themselves within this world, formulate the broader implications
of freedom, and continue the conversation on freedom, licensing, and their
craft, with a wider body of developers.

Although the philosophy aspect of the NMP often results in voluminous
expository output, it is by no means the bulk of the process; in fact, it is only
half of step three of a " ve- step process. The other half of the philosophy step
is known as procedures, in which applicants must demonstrate what the
general policies are as well as their ability to perform whatever individual
responsibilities they wish to take on within the project itself. Once the phi-
losophy and procedures step is deemed appropriately passed, the applicant
moves on to the rigorous tasks and skills step. This step con" rms that the
applicant has the necessary skills to carry out the job that they will take on
as a Debian developer. These tests vary depending on what the applicant will
be doing, but typically involve many technical questions. The overall pro-
cess generally results in several dozen pages of exhaustive responses along
with many back- and- forth discussions and clari" cations over months (and
sometimes up to a year) with the assigned application manager.

If accepted into the project, some developers slip into relative obscurity.
Some do not actively participate in Debian’s dynamic culture of debate and

T WO E T H I CA L M O M E N T S I N D E B I A N 1 4 9

dialogue. Some follow only as spectators, while others could care less about
what are perceived as overly dramatic conversations and concentrate wholly
on their technical contributions. But for most developers, in ethical terms,
the NMP is a highly condensed version of what 2 ows and follows in the
social metabolism of the project, though in a slightly altered version. The
narrative work that transforms codi" ed norms into meaningful ones contin-
ues within the project itself, and the knowledge gained during the process is
necessary for newcomers to integrate effectively into the project.

Interactions among developers in the ongoing debates tend to be less
concerned with the nature of the principles they committed to in the NMP
than with the implications of these principles. In other words, common prin-
ciples start to diverge into a multiplicity of newly generated ethical mean-
ings, some of which alter the basic procedures and structures of the project.
Even if their interpretations of principles diverge, developers usually refer
to the charters or shared precepts in arguments, and as such, these precepts
are kept actively relevant. Divergence and disagreement is thus the basis for
moral coexistence. I turn next to one such moment of group crisis.

CR I S I S A N D ET H I C A L RE N E WA L

Punctuated moments of distrust and despair are responsible for a great deal
of the existing framework of Debian itself. Crises occur when there are fun-
damental disagreements over some issue. These can range from governance
to legality, but many consistently revolve around a limited set of themes:
project transparency, major technical decisions, the meaning and scope of
freedom, and the relations between ordinary developers and those with
vested power. These grievances are expressed on mailing lists, IRCs, and
blogs; the writing that unfolds during moments of crisis is both voluminous
and markedly passionate.

These punctuated moments are eminently precarious: the nomos is under
threat, populated by all sorts of pitfalls and dangers. The drama of dis-
ease can spread uncontrollably like a virus, channeling the potent energy of
dissatisfaction into a pit of destabilizing disgust or despair. Tempers 2 are,
leading to in2 ammatory remarks that burn bridges, and people sometimes
cling too literally to codi" ed norms, blinding them to a unique situation that
yearns for its own unique response. The crisis may be of such great magni-
tude that it overshadows the positive energy that moves the project toward
a solution.

Despite their riskiness, however, periods of crisis are also among the most
fertile instances of ethical production, articulation, and transformation;
their mere expression is proof that people are ethically “on call.” People
would not be willing to take sides if they did not feel personally invested in
changing what is collectively diagnosed as a problem. Crisis periods are in-
cipient calls for movement and realignment, and hence reveal commitments

1 5 0 C H A P T E R 4

that, if acted on, can lead to positive solutions and a profound renewal of
the organization.

The formal attributes of crisis— its drama, high- pitched emotional na-
ture, and kinetic energy— have an ethical subtext that speaks to the fact
that an altered situation or unsatisfactory event has arisen that demands
immediate, overt attention. A crisis demands a response — one that a charter
or code cannot fully provide but rather must be sculpted through a fraught
process of voicing, debate, and action.

Because the emotional tone of communication induced by a crisis can
diverge signi" cantly from the way many developers expect or desire com-
munication to unfold, I run the risk of portraying crisis as a positive force
that can contribute to moral cohesion. Many developers adhere to a Haber-
masian (and so quite liberal) ideal of communicative interaction that re-
quires participants to shed personal interest and passion in favor of sober
rational discussion, where clarity is achieved because “all participants stick
to the same reference point” (Habermas 1987, 198). While communication
can certainly happen along those lines and be ethically productive, it down-
plays the inherently risky nature of many communicative acts (Butler 1997;
Gardiner 2004). Judith Butler (1997, 87– 88) in Excitable Speech probably
states this most poignantly when she argues that the Habermasian project
is self- limiting, possibly undermining its democratic aspirations, because of
its insistence on eliminating personal interest and the inherent risk in the act
of communication:

Risk and vulnerability are proper to the democratic process in the
sense that one cannot know in advance the meaning that the other
will assign to one’s utterance, what con2 icts of interpretation may well
arise, and how best to adjudicate the difference. The effort to come to
terms is not one that can be resolved in anticipation but only through a
concrete struggle of translation, one whose success has no guarantees.

Now let us take a look at one legendary “concrete struggle of translation”—
one whose resolution looked quite tenuous at the time of its unfolding.

PO RT R A I T O F A CR I S I S

The " rst story of ethics in Debian that I presented began with an ending:
the NMP was a solution to a crisis over the integration of new members. In
fact, it created a social architecture that, while imperfect, continues to sus-
tain a baseline level of trust and coherence, and helps to absorb and lessen
the shocks of future crises. Yet punctuated periods of distrust or malaise
invariably recur, and here I focus on one of the most memorable to have
hit Debian in the last ten years. So as the opening of this section on ethical
moments began with the story of an ending, the closing of this section will
end with a beginning.

T WO E T H I CA L M O M E N T S I N D E B I A N 1 5 1

There are a number of events that I could have chosen to illustrate the
social metabolism of a crisis in Debian. I have picked this one because of
the rich multiplicity of issues it raises, and because I actually witnessed and
closely followed its ebb and 2 ow from the instant it began to its current
recession.

Let me provide some background on the project’s status at the time in
March 2005. Debian was in the process of choosing a new leader. There
were several candidates, and the ideas they brought to the table concerned
fundamental questions of governance that could alter the nature of the
Debian project leadership, communications issues, the role of women in the
project, transparency, a perceived hostile working climate, growing pains,
and the uncertain threat of a new Linux project based on Debian (Ubuntu).
The project was gearing up to complete a new release, and given this, there
was a heightened sense of pressure. It was in this frenetic climate that a
single email began the crisis.

The Debian release manager sent this email to the developer list, an-
nouncing the " nal plans for releasing Debian’s latest distribution. An in-
person meeting in mid- March had convened in Vancouver, Canada, bringing
together the FTP masters, the release team, and members of the security
team to hammer out a plan that offered a concrete vision for Debian’s tech-
nical future. In addition to information about the upcoming release, pro-
posals were advanced detailing how to handle the release after that, called
“etch.” The participants in the Vancouver meeting had concluded that the
era of universal architecture support was over. Debian did not have the
technical or human resources to support as well as maintain so many differ-
ent versions of Debian at the time. These “ports,” as these different versions
are called, run on different hardware architectures, ranging from i386 to
AMD64:

The much larger consequence of this meeting, however, has been the craft-
ing of a prospective release plan for etch. The release team and the FTP mas-
ters are mutually agreed that it is not sustainable to continue making co-
ordinated releases for as many architectures as Sarge currently contains, let
alone for as many new proposed architectures as are waiting in the wings.
The reality is that keeping eleven architectures in a releasable state has been
a major source of work for the release team, the d- i team, and the kernel
team over the past year; not to mention the time spent by the DSA/build
admins and the security team. It’s also not clear how much bene" t there is
from doing stable releases for all of these architectures, because they aren’t
necessarily useful to the communities surrounding those ports. Therefore,
we’re planning on not releasing most of the minor architectures starting
with etch. They will be released with Sarge, with all that implies (includ-
ing security support until Sarge is archived), but they would no longer be
included in testing. This is a very large step, and while we’ve discussed it
fairly thoroughly and think we’ve got most of the bugs worked out, we’d

1 5 2 C H A P T E R 4

appreciate hearing any comments you might have. [. . .]
Note that this plan makes no changes to the set of supported release architec-
tures for Sarge, but will take effect for testing and unstable immediately after
Sarge’s release with the result that testing will contain a greatly reduced set of
architectures, according to the following objective criteria:

— it must " rst be part of (or at the very least, meet the criteria for) scc.
debian.org (see below)
— the release architecture must be publicly available to buy new
— the release architecture must have N+1 builds where N is the number
required to keep up with the volume of uploaded packages
— the value of N above must not be > 222

At " rst glance it may be unclear what in this technical, matter- of- fact
email would have led to a crisis. The meeting’s participants included the
technical guardians of Debian, and their advice is usually held with re-
spect. But before I explain why such a seemingly benign proposal produced
such an event, " rst let me describe the response, for it was nothing short
of monumental— even by Debian standards of crisis. Within the " rst day
there were over " ve hundred email messages in response, and within three
days, there were over nine hundred emails. This text of mailing lists, if taken
together, could probably " ll one or possibly two multivolume dissertations.
On IRCs, conversation was bubbling nonstop about this debacle. Posts ana-
lyzing the event and its signi" cance appeared on Planet Debian, the group
Debian blog that aggregates individual developer’s blogs. I had to spend
days reading this material.

The cascade of responses was astonishing. It is " rst worth portraying the
atmosphere of utter paradox that arose, in which synchronicity sat along-
side unsettling discordance. The project was in one of the most pronounced
moments of unity that I had seen in a long time. Hundreds and hundreds
of developers gave the problem their due attention in the form of numerous
writings— on mailing lists, IRCs, and blogs. For days the project felt like it
was riding the same but nevertheless dangerously large and unstable collec-
tive wave. This was also a moment of pronounced dis- ease and thus discor-
dance, where differences of opinion rang loud and overblown accusations
prevailed, as if a furious legion of frenzied and rabid hydra had suddenly
appeared on the scene, with each individual head screeching, rearing, and
rending in all directions.

It felt as if Debian was coming apart at its seams. But a duality of cen-
trifugal discordance and centripetal synchronicity de" nes crisis. Crisis sits at
a crossroads, a moment of betwixt and between when outcomes are decid-
edly uncertain. During this period, people were brought together to express
their deep dissatisfaction, but pulled apart from one other by different sets
of con2 icting opinions— including over the very reaction— with unity under

T WO E T H I CA L M O M E N T S I N D E B I A N 1 5 3

dire threat. There was a sense that this crisis was at once remarkably silly
and overblown, a distraction from the work required by the immanent re-
lease, yet fully important and serious, as if some line had been crossed. Why?
What was it about this particular email that caused such collective alarm?

The crisis rested on several factors. Notably, the developers were able to
suture a wide range of concerns to this email, but one of the most signi" cant
complaints, stated over and again, was about its tone: its disharmonious
resonance struck the wrong collective chord, working to resurrect the proj-
ect’s perennial discomfort over the corruptibility of meritocratic authority.
Other precipitating factors included its timing and content. Last but not
least was the email’s content, which many developers found shocking. Over
the course of many years, Debian had built an image of being a Universal
OS, special among its class because it ran on more architectures than any
other Linux distribution. Developers had informally animated the edi" ce of
the DFSG’s nondiscrimination clause to include architecture support. The
announcement that the era of technical universality was perhaps soon to be
part of its past was a huge blow to Debian’s sense of collective pride.

Complaints about the email’s tone centered on the following sentence:
“The release team and the FTP masters are mutually agreed that it is not
sustainable to continue making coordinated releases for as many architec-
tures as Sarge currently contains, let alone for as many new proposed archi-
tectures as are waiting in the wings.” Even though the email was stated as a
proposal, below is a short excerpt from an IRC discussion that articulated
the shock that the email produced:

<kivet> mm, I certainly didn’t expect the meeting to be quite so wide-
ranging; in advance, I rather expected it to be mostly “ok, let’s sort out
Sarge; [. . .] oh, and in the ! ve minutes we have left, how can we look
to avoid this in the future?”

<yaarr> vapor- b: if you wanted open discussion, you should have stopped
in your tracks when it became apparent that other people might be
interested in the subject. Don’t do shadowy meetings on your part and
request open discussion from us.

<stig> Yaarr: but that is what happened: they put out a proposal and now
it can be discussed.

<yaarr> yeah, sure
<markel> and the announcement, signed off by all the people who do the

work, and most future dpl candidates, had an unfortunate ring of ! nal-
ity. If indeed this is a proposal, that is open to serious discussion (as
opposed to “this is the way it is, unless you happen to convince all of
us of something else, despite the hours of discussion where we ham-
mered it all out”), than [sic] perhaps a follow- up is in order.

<markel> stig: I don’t know about you, but my comprehension of the
English language has been often deemed adequate, and my take of
the announcement was a fait accompli.

1 5 4 C H A P T E R 4

<yaarr> stig: as I told you before, the idea is for our statement to be con-
structive, in that it’ll try to suggest some modi! cations that will make
this mess a bit less of a problem to us.

What this discussion demonstrates is that by presenting a fairly signi" cant
technical change in a way that seemed like an established decision, the del-
egates violated the norms of acceptable and appropriate behavior. In this
proposal, many developers found it dif" cult to believe in the “pure technical
intentions” of entrusted members. What had failed here was a necessary
performance of the goodwill that normally acts to limit anxieties about cor-
ruption in meritocracies, especially those with hierarchies like Debian.

What this event revealed is that Debian’s implementation of meritocracy,
like all meritocracies, is a fragile framework easily overtaken by the threat
of corruptibility. In the case of Debian, this threat is particularly onerous,
for it can potentially block the conditions for rough technical consensus;
this event ostensibly edged too close to such corruption for the project’s
comfort zone.

Within Debian, the delegates and teams hold a similar form of author-
ity as the mythical philosopher king and his guardians presented in one
of the most favorable accounts of meritocratic rule, Plato’s Republic. In
this imagined world, rulers are granted authority for life by virtue of their
talents, their passion for the inherent good of ruling, and a well- cultivated
character that breeds the proper “intent” for rule. Leaders are those who
are “full of zeal to do whatever they believe is for the good of the common-
wealth and never willing to act against its interest. They must be capable of
possessing this connection, never forgetting it or allowing themselves to be
either forced or bewitched into throwing it over” (Plato n.d.). This senti-
ment is eerily descriptive of the ways in which Debian developers conceive
of proper meritocratic rule. Team members and delegates are entrusted to
hold technical authority for as long as they want to (insofar the Debian
project leader has never removed someone from these positions), because
they display their “zeal” to do good for the “technical commonwealth” of
Debian through superior acts of technical production.

In Plato’s imaginary republic, rulers were kept in check by being subject
to a highly public presence and the demands of rigorous ascetic life— little
property and no domestic relations. These components con" rmed and sus-
tained proper intent. But in Debian, there are few formal mechanisms to curb
the excesses of power of those who have been granted positions of technical
authority. Teams and delegates, in theory, are fully trusted members who no
longer have to perform their intent in order to prove their worth and make
decisions. The teams that convened in Vancouver were empowered to make
the signi" cant technical decisions that they proposed. Yet in practice (as this
crisis made clear), such decisions would be dif" cult to pull off without " rst
consulting and building technical consensus. The guardians are bound by
the informal codes discussed earlier in this chapter by which they must be

T WO E T H I CA L M O M E N T S I N D E B I A N 1 5 5

seen to act not out of a self- interest but instead always in the interest of the
Debian project.

Given this, the overwhelming response to the Vancouver prospectus was
a reaction to the perceived violation of meritocratic trust, and during this
period, accusations of a cabal proliferated. It seemed to some as if the myth,
the joke, of “smoky backrooms” in Debian was perhaps no joke at all. But
if the crisis raised the specter of mistrust, it was also the very mechanism by
which trust was rebuilt again. The overt public voicing and revoicing that
the Vancouver meeting “smacks too much of deals in smoky backrooms,
where a seat at the table is by explicit invitation,” was a moment of col-
lective clari" cation. The backlash and conversations that called Debian’s
philosopher kings to task served to call attention to what was seen as poten-
tially inappropriate exercises of technical meritocratic authority as well as
an opportunity for Debian guardians to assert that no such thing had ever
happened.

Through an overwhelming tide of emails, many of these delegates were
forced to explain the reasoning behind their recommendation that Debian
limit architecture support. In turn, developers contributed their own views
on what would have been the proper way to approach the problem, and
others contributed discussions and proposals about how to technically pro-
ceed. The release manager and another member of the participating teams
were remarkably attentive: they wrote emails and talked to developers on
IRCs to appease fears, explained technical details, took into account the
recommendations of others, revealed what happened at the meeting, and
especially, reaf" rmed that nothing was written in stone. In essence, they
conformed to the stipulation by Plato (n.d.) that “[the guardians] must be
capable of possessing this connection, never forgetting it or allowing them-
selves to be either forced or bewitched into throwing it over.” In contrast
with Plato’s Republic, what this crisis shows is how in Debian, anyone can
theoretically become a philosopher king so long as they posses the right
intent and skill, and so long as the channels for dialogue are kept open. As a
result of these often- passionate outpourings, the proposal was transformed
into a proposition awaiting further discussion. In the end, although it took
a blow, trust was reestablished.

One participant and member of the FTP team posted the following expla-
nation, which provided a window into the meeting’s organic development
and af" rmed the proposal’s openness:

As it happened, James and I were staying at Ryan’s, and after dinner on Fri-
day night (before the meeting proper started, but after we’d met everyone),
we chatted about the topic and came to the opinion that removing a bunch
of architectures from being release candidates would be necessary— for rea-
sons I hope are adequately explained in the announcement, or that will be on
– devel as people ask. As it turned out, when we got to the actual meeting the

1 5 6 C H A P T E R 4

next day, this was more or less exactly what Steve was wanting to propose,
and he seemed to be expecting most of the objections to come from James,
Ryan and/or me. So instead of that, we then spent a fair while discussing
criteria for what support architectures would/should receive.

Hopefully the above provides some useful speci" cs for people to talk about.

>As a result, the rest of the project had little input into
>the decision- making process.

That’s why it’s posted on the lists now— it [is] never too late to get input into
something in Debian; even after we’ve committed to something, we can almost
always change our minds [emphasis added].

Due to these outpourings, many of which were wildly passionate, any ambi-
guity as to the proposal’s status was dispelled, transforming it to an unam-
biguous proposition waiting to be further explored.

When the acute phase of the Vancouver crisis was over, energy was di-
verted back to releasing the subsequent version of Debian: Sarge. Certainly,
there remains a tremendous amount of work to be done on the technical
problem of architecture support in Debian, and there are many broader
questions about governance that this crisis raised. Even if it was af" rmed
that entrusted members of Debian should consult the entire project before
proposing radical changes, there seems to be a growing unease among many
developers over the scalability of technical consensus. The rough consensus
that so many developers are proud of seems to have gotten rougher with
the addition of each new developer, and eventually Debian developers may
have to start thinking about novel social solutions to accommodate these
changes. For that period, however, the work laid out by the Vancouver pro-
spectus was entrusted to anyone who has a stake in the process. The " eld
had been momentarily leveled despite the hierarchies of power that emerge
from a meritocratic system.

If much of the work performed during this crisis reopened the decision-
making process to the whole project, it also allowed developers to collec-
tively af" rm that the values they tend to desire from technology (account-
ability, openness, and access) are those that they also expect from project
governance and members of their project, especially those who hold vet-
ted positions of power. Nonetheless, Debian is a dynamic organization. It
changes. And through these types of unforeseen con2 icts, the door to a re-
2 ective process of assessing is frequently opened, allowing developers to
revoice their commitment to informal norms of governance and begin the
design work to reach new solutions within these norms.

While the charters codify these values, the texts do not fully determine
their signi" cance within the everyday life of the project. The values must

T WO E T H I CA L M O M E N T S I N D E B I A N 1 5 7

be enacted in various guises— one of which is a passionate outpouring of
commitments during moments of dis- ease. Mikhail Bakhtin’s discussion of
ethical situationalism can help account for the necessity and importance
of the crisis as a moment in which preexisting norms and codes break
down, and then need to be rearticulated. In Toward a Philosophy of the
Act, Bakhtin offers an ethical theory of action that repudiates the impli-
cations of formalistic theories of ethics, particularly Immanuel Kant’s
categorical imperative. Formalism requires what Bakhtin interprets as a
suspect allegiance to universally conceived theoretical precepts standing
above time and place.23 Bakhtin argues that an overallegiance to theoreti-
cal precepts misdirects and thus disables responsibility instead of channel-
ing it toward an active confrontation with the living moment in its full-
blooded complexity. The effect of such “acts of abstraction,” says Bakhtin
(1993, 7; emphasis added), is to be “controlled by [. . .] autonomous
laws” in which people are “no longer present in it as individually and an-
swerable active human beings.”

Although Bakhtin’s dismissal of codi" ed norms is somewhat over-
stated— in fact as I have been contending here, norms are more practical
then he suggests; they are necessary guiding abstractions that establish a
common ground for action and social cohesion— his critique nonetheless
clari" es a number of key points. For Bakhtin, the most problematic aspect
of formal ethics is that they provide a false sense of security, “an alibi” for an
actual ethical being that downplays the inherent risk and con2 ict of making
decisions along with the necessity of working toward solutions. The hard
labor of ethics, its demanding phenomenology, is an outgrowth of taking
risks, putting in the effort to engage with others, and choosing to confront
the situation at hand in its speci" city.

Despite Bakhtin’s repudiation of theoretical dogmatism, he is careful
to steer away from advocating moral relativism. As Michael Gardiner
(2004, 39) maintains, Bakhtin rejects relativism for its shaky theoretical
presumption that “a priori the mutual incomprehension of view [. . .]
renders authentic dialogue super2 uous.” Rather, Bakhtin asserts that in-
dividuals can potentially achieve some level of consensus because they
are situated within a shared world of meaning. Despite clear differences
in opinion that are unquestionably made evident during periods of crisis,
people participating in a collective endeavor are nevertheless situated in a
shared social space and committed to a baseline set of goals. As a result of
Debian developers’ common participation in the project and shared ritu-
als of entry such as the NMP, common participation within the broader
hacker public, and participation in public events like conferences, they
can draw on a set of shared experiences to work toward resolving crisis.
This is an important condition of possibility that speaks to a potential,
though not a guarantee, for consensus. To reach agreement, ethical labor
must still be performed.

1 5 8 C H A P T E R 4

CO N C L U S I O N

Given what I have written in this chapter, I hope it is clear that the praxis
of ethics among Debian developers is diverse and ongoing; the making of a
nomos is a dynamic affair. At times, ethical work occurs as an implicit form
of enculturation, and in other moments, it takes shape as a re2 ective voicing
through which a series of temporally and personally signi" cant transforma-
tions are declared as well as achieved. For example, the new maintainer
narratives allow developers to reevaluate their lives, making them into life
histories that publicly offer a current and future commitment to a common-
wealth. Crises represent moments of limits; charters and even routine nar-
rative discussion are never enough to confront the emergent realities of new
situations. In the simplest terms possible, an ethical life demands constant
attention, response, reevaluation, and renewal.

A critical question remains: Can we generalize Debian to illuminate the
ethical processes of other virtual or F/OSS projects? With such a stark ad-
herence to well- established ethical precepts, is Debian in fact just the radical
black sheep of development projects? Or do other projects exhibit similar
social, organizational, and ethical processes? It is worth noting that with
over one thousand developers, Debian is the largest free software project
and thus not simply sitting on the margins. Furthermore, each project has
its own peculiar idiosyncrasies, so it is impossible to use any one project to
generalize about all of them. If the processes I discussed here exist on a spec-
trum, Debian undoubtedly resides on one end by virtue of its articulation of
strong moral commitments whereas others, such as the Linux kernel project,
steer clear from explicit moral language.

But other endeavors evince many of the elements explored here. Every
large project is dynamic, and has had to deal with the problems of trust
and scalability. Most of the large ones have had to routinize, like Debian,
by devising formal procedures for entry that require prospective members
to undergo mentorship and training. Many medium- to large- size projects
have drafted key documents that de" ne their goals and vision. In the case
of Debian, they have formalized this into the Social Contract. Similar to
developers who labor in distinct places, in other free software projects to
large technology " rms, Debian developers also seek to strike a balance be-
tween individually initiated decision making and vertical authority, yielding
to the latter to some quali" ed degree, even if clearly preferring the former.
The ways in which this balance is reached— when and if it is— never follow
a predictable, unitary path, although the general attempt is a crucial conduit
for articulating and embodying this commitment.

PART I I I

THE POLITICS OF AVOWAL
AND DISAVOWAL

••

We do not act because we know.
We know because we are called upon to act.

— Johann Gottlieb Fichte, The Vocation of Man

The " nal two chapters engage directly with the politics of free software.
Chapter 5 examines the politics of avowal and popular protest, and

the conclusion looks at the disavowal of broadly conceived politics among
many free software hackers.

Chapter 5 explores two different conditions under which free software
developers learn about the law. It contrasts everyday legal pedagogy as it
unfolds in Debian with a lively series of political protests, which I describe
as a moment of political avowal because of the way hackers and program-
mers took to the streets between 1999 and 2003 to insist on their free speech
rights to create as well as circulate software unencumbered by current legal
restrictions. During this period, F/OSS hackers enunciated more re2 exively
than ever before their free speech rights to produce and distribute software,
thereby working to stabilize a relatively new cultural claim in which source
code came to be imagined as a species of free speech.

In contrast to this period of lively political protest, the conclusion ex-
amines what I consistently witnessed during my " eldwork: a reluctance to
signify free software beyond a narrow politics of software freedom. I start
by discussing how and why this is articulated, but quickly move on to look
at the consequence of this political disavowal. A central feature of F/OSS
has been its political agnosticism, which has facilitated, I argue, its spread
and adoption, allowing it to attain a position where it can circulate widely
and perform a political message. Through its visibility and its use by mul-
tiple publics, F/OSS thus makes apparent the assumptions that dominate
the moral landscape of intellectual property law and mainstream economic
theory. An important element here is the transposability of F/OSS, or its

power to enjoin others to become part of its performance in various ways—
through the use of F/OSS artifacts and licenses, participation in projects, re-
2 ections on the larger meaning of collaboration, and the recon" gurations of
licenses for other nontechnological objects. Its most profound political effect
has been to devitalize the hegemonic status of intellectual property law and
catalyze a series of transformations in the arena of intellectual property law.

C H A P T E R 5

Code Is Speech

••

Like many computer a" cionados today, Seth Schoen writes all of his soft-
ware as free software to ensure that the source code— the underlying

directions of computer programs— will remain accessible for other devel-
opers to use, modify, and redistribute. In so doing, Schoen not only makes
technology but also participates in an effort that rede" nes the meaning of
liberal freedom, property, and software by asserting in new ways that code
is speech. A tiny portion of a 456- stanza haiku written by Schoen (2001),
for example, makes just this claim:

Programmers’ art as
that of natural scientists

is to be precise,

complete in every
detail of description, not
leaving things to chance.

Reader, see how yet
technical communicants

deserve free speech rights;

see how numbers, rules,
patterns, languages you don’t

yourself speak yet,

still should in law be
protected from suppression,

called valuable speech!1

Schoen’s protest poem not only argued that source code is speech but
also demonstrated it: the extensive haiku was in fact a transcoding of a
short piece of free software called DeCSS, which could be used to decrypt
access controls on DVDs in violation of current copyright laws. Schoen did
not write this poem simply to be clever. His work was part of a worldwide
wave of protests following the arrest of DeCSS’ coauthor, Johansen, and the
lawsuits launched against some of those who published the software.

1 6 2 C H A P T E R 5

In this chapter, I examine how F/OSS developers like Schoen are recon-
" guring what source code and speech mean ethically, legally, and culturally,
and the broader political consequences of these rede" nitions. I demonstrate
how developers refashion liberal precepts in two distinct cultural “loca-
tions” (Gupta and Ferguson 1997): the F/OSS project, already covered in
detail in the last chapter, and the context of much broader legal battles.

First, I show how F/OSS developers explore, contest, and specify the
meaning of liberal freedom— especially free speech— via the development
of new legal tools and discourses within the context of the F/OSS project. I
highlight how developers concurrently tinker with technology and the law
using similar skills, which transform and consolidate ethical precepts among
developers. Using Debian as my primary ethnographic example, I suggest
that these F/OSS projects have served as an informal legal education, trans-
forming technologists into astute legal thinkers who are experts in the legal
technicalities of F/OSS as well as pro" cient in the current workings of intel-
lectual property law.

Second, I look at how these developers marshal and bolster this legal
expertise during broader legal battles to engage in what Charles Tilly and
Sidney Tarrow (2006) describe as “contentious politics.” I concentrate on a
series of critical events (Sewell 2005): the separate arrests of two program-
mers, Johansen and Sklyarov, and the protests, unfolding between 1999 and
2003, that they provoked. These events led to an unprecedented prolifera-
tion of claims connecting source code to speech, with Schoen’s 456- stanza
poem providing one of many well- known instantiations. The events are his-
torically notable because they dramatize what normally exists more tacitly
and bring visibility to two important social processes. First, they publicize
the direct challenge that F/OSS represents to the dominant regime of intel-
lectual property (and thus clarify the democratic stakes involved), and sec-
ond, they make more visible and hence stabilize a rival liberal legal regime
intimately connecting source code to speech.

TH E ET H I C S O F LE G A L CO N T R A S T

Debian developers, like other F/OSS developers, are constituted as legal sub-
jects by virtue of being extremely active producers of legal knowledge. This
is an outgrowth of three circumstances. For one, developers have to learn
basic legal knowledge in order to participate effectively in technological
production. They must ascertain, for instance, whether the software license
on the software application they maintain is compliant with licensing stan-
dards, such as the DFSG. Second, developers tend to closely track broader
legal developments, especially those seen as impinging on their practices.
Is the Unix company SCO suing IBM over Linux? Has the patent direc-
tive passed in the EU Parliament? Information regarding these and other

C O D E I S S P E E C H 1 6 3

relevant developments is posted widely on IRC channels, mailing lists, and
especially Web sites such as Slashdot, Boing Boing, and Reddit. These chan-
nels form a crucial part of the discourse of the hacker public. Third and
most important, developers largely produce their own legal artifacts, and as
a result, there is a tremendous body of legal exegesis (e.g., charters, licenses,
and legal texts) in the everyday life of their F/OSS projects. Projects adopt
the language of the law to organize their operations, adding a legal layer to
the structural sovereignty of these projects.

To be sure, there are some developers who express an overt distaste
for discussions of legal policy and actively distance themselves from this
domain of polluting politics. But even though the superiority of technical
over legal language, even technical over legal labor, is acknowledged among
hackers— some hackers will even claim that it is a waste of time (or as stated
a bit more cynically yet humorously by one developer: “Writing an algo-
rithm in legalese should be punished with death [. . .] a horrible one, by
preference”)— it is critical to recognize that geeks are in fact nimble legal
thinkers. One reason for this facility, I suggest, is that the skills, mental
dispositions, and forms of reasoning necessary to read and analyze a for-
mal, rule- based system like the law parallel the operations necessary to code
software. Both, for example, are logic oriented, internally consistent textual
practices that require great attention to detail. Small mistakes in both law
and software— a missing comma in a contract or a missing semicolon in
code— can jeopardize the system’s integrity and compromise the author’s
intention. Both lawyers and programmers develop mental habits for mak-
ing, reading, and parsing what are primarily utilitarian texts. As noted by
two lawyers who work on software and law, “coders are people who write
in subtle, rule- oriented, specialized, and remarkably complicated dialects”—
something, they argue, that also pertains to how lawyers make and interpret
the law (Cohn and Grimmelmann 2003).2

This helps us understand why it has been relatively easy for developers to
integrate the law into everyday technical practice and advocacy work, and
avoid some of the frustration that af2 icts lay advocates trying to acquire
legal 2 uency to make larger political claims. For example, in describing the
activists who worked on behalf of the victims of the Bhopal disaster, Kim
Fortun (2001, 25– 54) perceptively shows how acquiring legal 2 uency (or
failing to adequately do so) and developing the correct legal strategy is frus-
trating, and can lead to cynicism. Many hackers are similarly openly cynical
about the law because it is seen as easily subject to political manipulation;
others would prefer not to engage with the law as it takes time away from
what they would rather be doing— hacking. Despite this cynicism, I never
encountered any expression of frustration about the actual process of learn-
ing the law. A number of developers I worked with at the Electronic Frontier
Foundation or those in the Debian project clearly enjoyed learning as well
as arguing about a pragmatic subset of the law (such as a particular legal

1 6 4 C H A P T E R 5

doctrinal framework), just as they did with respect to technology. Many
developers apply the same skills required for hacking to the law, and as we
will see, technology and the law at times seamlessly blend into each other.

To offer a taste of this informal legal scholarship— the relationship be-
tween technical expertise and legal understanding, and how legal questions
are often tied to moral issues— in one free software project, I will describe
some of Debian’s legal micropractices: its routine legal training, advocacy,
and exegesis. In order to deepen this picture of how developers live in and
through the law, I proceed to a broader struggle— one where similar legal
processes are under way, but also are more visible because of the way they
have circulated beyond the boundaries of projects proper.

“LI V I N G OU T LE G A L ME A N I N G”

Just over a thousand volunteers are participating in the Debian project at
this time, writing and distributing a Linux- based OS composed over twenty-
" ve thousand individual software applications. In its nascency, Debian was
run entirely informally; it had fewer than two dozen volunteers, who com-
municated primarily through a single email list. To accommodate growth,
however, signi" cant changes in policy, procedures, and structure took place
between 1997 and 1999. The growth of Debian, as discussed in the last
chapter, necessitated the creation of more formal institutional policies and
procedures. Central to these procedures is the NMP, which not only screens
candidates for technical skills but also serves as a form of legal education.

Several questions in the NMP application cover what is now one of the
most famous philosophical and legal distinctions in the world of free soft-
ware: free beer versus free speech. Common among developers today, this
distinction arose only recently, during the early to mid- 1990s. A prospective
Debian developer comments on the difference in an NMP application: “Free
speech is the possibility of saying whatever one wants to. Software [that is]
free as in beer can be downloaded and used for free, but no more. Software
[that is] free as in speech can be " xed, improved, changed, [or] be used
as building block for another [sic] software.”3 Some developers also note
that their understanding of free speech is nested within a broader liberal
meaning codi" ed in the constitutions of most liberal democracies: “Used
in this context the difference is this: ‘free speech’ represents the freedom to
use/modify/distribute the software as if the source code were actual speech
which is protected by law in the US by the First Amendment. [. . .] ‘[F]ree
beer’ represents something that is without monetary cost.”4 This differentia-
tion between free beer and free speech is the clearest enunciation of what,
to these developers, are the core meanings of free— expression, learning,
and modi" cation. Freedom is understood foremost to be about personal
control and autonomous production, and decidedly not about commodity

C O D E I S S P E E C H 1 6 5

consumption or “possessive individualism” (Macpherson 1962)— a message
that is constantly restated by developers: free software is free as in speech,
not in beer.

This distinction may seem simple, but the licensing implications of free-
dom and free speech are complicated enough that the NMP continues with
a series of technically oriented questions whose answers start to enter the
realm of legal interpretation. Many of these questions concern the DFSG, a
set of ten provisions by which to measure whether a license can be consid-
ered free. Of these questions, one or two are fairly straightforward, such as:

“Do you know what’s wrong with Pine’s current license in regard to
the DFSG?”

After looking at the license on the upstream site it is very clear why
Pine is non- free. It violates the following clauses of the DFSG:

 1. No Discrimination Against Fields of Endeavor— it has different
requirements for non- pro" t vs. pro" t concerns.

 2. License Must Not Contaminate Other Software— it insists that all
other programs on a CD-ROM must be “free- of- charge, shareware,
or non- proprietary.”

 3. Source Code— it potentially restricts binary distribution [binary
refers to compiled source code].

The sample license for an e- mail program, Pine, violates a number
of DFSG provisions. With different provisions for nonpro" t and for-
pro" t endeavors, as an example, it discriminates according to what the
DFSG calls “" elds of endeavor.”

Developers are then asked a handful of far more technical licensing ques-
tions, among them: “At http://people.debian.org/~joerg/bad.licenses.tar.bz2
you can " nd a tarball of bad licenses. Please compare the graphviz and
three other (your choice) licenses with the " rst nine points of the DFSG and
show what changes would be needed to make them DFSG-free.” The answer
clearly demonstrates the depth of legal expertise required to address these
questions: “Remove the discriminatory clauses [. . .] allow distribution of
compiled versions of the original source code [. . .] replace [sections] 4.3
with 4.3.a and 4.3.b and the option to choose.”5

After successfully " nishing the NMP, some developers think only rarely
about the law or the DFSG, perhaps only tracking legal developments of
personal interest. Even if a developer is not actively learning the law, how-
ever, legal discourse is nearly unavoidable because of the frequency with
which it appears on Debian mailing lists or chat channels. Informal legal
pedagogy thus continues long after the completion of the NMP.

As an illustration, below I quote from an arcane discussion on IRC wherein
a developer proposed a new Debian policy that would clarify how non- free-
software packages (those noncompliant with their license guidelines) should

1 6 6 C H A P T E R 5

be categorized so as to make it absolutely clear how and why they cannot be
included in the main software repository, which can only have free software.
I do not want to emphasize the exact legal or technical details but rather
how, late on a Friday night (when the conversation happened), a developer
made a policy recommendation, and his peers immediately offered advice
on how to proceed, talking about the issue with such sophisticated legal
vocabulary that to the uninitiated, it will likely appear as obscure, obtuse,
and hard to follow. This is simply part of the “natural” social landscape of
most free software projects.

<dangmang> Markel: what is your opinion about making a recommenda-
tion in policy that packages in non- free indicate why they’re in non-
free, and what general class of restrictions the license has?

<markel> dangmang: well, I am not too keen on mandating people
do more work for non- free packages. but it may be a good practice
suggestion.

<jabberwalkie> dangmang: Then I would suggest that the ideal approach
would be to enumerate all the categories you want to handle ! rst, giv-
ing requirements to be in those categories.

<dangmang> Markel: true. could the proposal be worded so that new
uploads would have to have it? [. . .]

<jabberwalkie> dangmang: You don’t want to list what issues they fail;
you want to list what criteria they meet. [. . .]

<jabberwalkie> dangmang: X- Nonfree- Permits: autobuildable, modi! able,
portable.

<markel> the developers- reference should mention it, and policy can
recommend it, for starters.

<markel> dangmang: we need to have well de! ned tags.
<jabberwalkie> mt3t: “gfdl,” “! rmware.” [. . .]

<jabberwalkie> mt3t: No “You may not port this to _____.”
<jabberwalkie> mt3t: You wouldn’t believe what people put in their

licenses. :)
<dangmang> Markel: right. [. . .] I think I’ll start on the general outline of

the proposal, and # esh things out, and hopefully people will have com-
ments to make in policy too when I start the procedure.

More formal legal avenues are also employed. Debian developers may
contact the original author (called the upstream maintainer) of a piece of
software that they are considering including and maintaining in Debian.
Many of these exchanges concern licensing problems that would keep
the software out of Debian. In this way, non- Debian developers also un-
dergo informal legal training. Sometimes developers act in the capacity
of legal advocates, convincing these upstream maintainers to switch to a

C O D E I S S P E E C H 1 6 7

DFSG- compliant license, which is necessary if the software is to be included
in Debian.

The developers who hold Debian- wide responsibilities must in general
be well versed in the subtleties of F/OSS licensing. The FTP masters, who
integrate new software packages into the main repository, must check every
single package license for DFSG compatibility. Distributing a package ille-
gally could leave Debian open to lawsuits.

One class of Debian developers has made legal matters their obses-
sion. These a" cionados contribute proli" cally to the legal pulse of Debian
in debian- legal— a mailing list that because of its legal esoterica and large
number of posts, is not for the faint of heart. For those who are interested
in keeping abreast but do not have time to read every message posted on
debian- legal, summaries link to it in a weekly newsletter, Debian Weekly
News. Below, I quote a fraction (about one- " fth) of the legal news items
that were reported in Debian Weekly News during the course of 2002 (the
numbers are references linking to mailing list threads or news stories):

GNU FDL a non- free License? Several [22] people are [23] discussing
whether the [24] GNU Free Documentation License (GFDL) is a free
license or not. If the GFDL is indeed considered a non- free license, this
would [25] render almost all KDE and many other well known pack-
ages non- free since they use the GNU FDL for the documentation.
Additionally, here’s an old [26] thread from debian- legal, which may
shed some light on the issue.6

RFC: LaTeX Public Project License. Claire Connelly [4] reported
that the LaTeX Project is in the process of considering changes to the
LaTeX Project Public License. She tried to summarize some of the
concerns that Debian people have expressed regarding the changes.
Hence, Frank Mittelbach asked for reviews of the draft of version 1.3
of the [5] LaTeX Public Project License rather than of the current ver-
sion (1.2).7

Enforcing Software Licenses. Lawrence Rosen, general counsel for the
[20] Open Source Initiative, wrote an [21] article about the enforce-
ability of software licenses. In particular, he discusses the issue of prov-
ing that somebody assented to be bound by the terms of a contract
so that those terms will be enforced by a court. Authors who wish to
be able to enforce license terms against users of their source code or
compiled programs may " nd this interesting.8

Problematic BitKeeper License. Branden Robinson [3] pointed out
that some of us may be exposed to tort claims from BitMover, Inc.,
the company that produces BitKeeper, the software that is the primary
source management tool for the Linux kernel. Your license to use Bit-
Keeper free of charge is revoked if you or your employer develop,

1 6 8 C H A P T E R 5

produce, sell, or resell a source management tool. Debian distributes
rcs, cvs, subversion and arch at least and this seems to be a [4] different
case. Ben Collins, however, who works on both the Linux kernel and
the subversion project, got his license to use BitKeeper free of charge
[5] revoked.9

These are newsletter summaries, which are read by thousands of develop-
ers outside the Debian community proper as well as by Debian developers.
Practical and immediate concerns are layered on global currents along with
more philosophical musings. Some discussions can be short, breeding less
than a dozen posts; other topics are multiyear, multilist, and may involve
other organizations, such as the FSF. These conversations may eventually
expand and reformulate licensing applications.

It is also worth noting how outsiders turn to Debian developers for legal
advice. One routine task undertaken in debian- legal is to help developers
and users choose appropriate licensing, by providing in- depth summaries
of alternative licenses compliant with the DFSG. One such endeavor I wit-
nessed was to determine whether a class of Creative Commons licenses (de-
veloped to provide creative producers, such as musicians and writers, with
alternatives to copyright) was appropriate for software documentation.
Debian developers assessed that the Creative Commons licenses under con-
sideration failed to meet the DFSG’s standards, and suggested that Debian
developers not look to them as licensing models. The most remarkable as-
pect of their analysis is that it concluded with a detailed set of recommen-
dations for alterations to make the Creative Commons licenses more free
according to the Debian licensing guidelines. In response to these recom-
mendations, Lessig of Creative Commons contacted Evan Prodromou, one
of the authors of this analysis, to try to " nd solutions to the incompatibili-
ties between the DFSG and some of the Creative Commons licenses.

There is something ironic, on the one hand, about a world- renowned
lawyer contacting a bunch of geeks with no formal legal training to dis-
cuss changes to the licenses that he created. On the other hand, who else
would Lessig contact? These developers are precisely the ones making and
therefore inhabiting this legal world. These geeks are training themselves to
become legal experts, and much of this training occurs in the institution of
the free software project.

Debian’s legal affairs not only produce what a group of legal theo-
rists have identi" ed as everyday legal awareness (Ewick and Silbey 1998;
Mezey 2001; Yngvesson 1989). The F/OSS arena probably represents the
largest single association of amateur intellectual property and free speech
legal scholars ever to have existed. Given the right circumstances, many
developers will marshal this expertise as part of broader, contentious bat-
tles over intellectual property law and the legality of software— the topic
of the next section.

C O D E I S S P E E C H 1 6 9

CO N T E N T I O U S PO L I T I C S

If hackers acquire legal expertise by participating in F/OSS projects, they
also use and fortify their expertise during broader legal battles. Here I ex-
amine one of the most heated of the recent controversies over intellectual
property, software, and access: the arrests of Johansen and Sklyarov. These
arrests provoked a series of protests and produced a durable articulation of
a free speech ethic that under the umbrella of F/OSS development, had been
experiencing quiet cultivation in the previous decade. Intellectual prop-
erty has been debated since its inception (Hesse 2002; Johns 2006; McGill
2002), but as media scholar Siva Vaidhyanathan (2004, 298) notes, in recent
times intellectual property debates have “rarely punctured the membrane of
public concern.” It was precisely during this period (1999 to 2003), and in
part because of these events, that a more visible, notable, and “contentious
politics” (Tilly and Tarrow 2006) over intellectual property emerged, espe-
cially in North America and Europe.

Before discussing how the emergence of this contentious politics worked
to stabilize the connection between speech and code, some historical context
is necessary. At the most general level, we can say a free speech idiom formed
as a response to the excessive copyrighting and patenting of computer soft-
ware. Prior to 1976, such an idiom had been rare. The " rst widely circu-
lated paper associating free speech and source code was “Freedom of Speech
in Software,” written by programmer Peter Salin (1991). He characterized
computer programs as “writings” to argue that software was un" t for pat-
ents, although appropriate for copyrights and thus free speech protections
(patents being for invention, and copyright being for expressive content).
The idea that coding was a variant of writing was also gaining traction,
in part because of the popular publications of Stanford Computer Science
professor Donald Knuth (1998; see also Black 2002) on the art of pro-
gramming. During the early 1990s, a new ethical sentiment emerged among
Usenet enthusiasts (many of them hackers and developers) that the Internet
should be a place for unencumbered free speech (Pfaffenberger 1996). This
sensibility in later years would become speci" ed and attached to technical
artifacts such as source code.

Perhaps most signi" cantly, what have come to be known as the “encryp-
tion wars” in the mid- 1990s were waged over the right to freely publish
and use software cryptography in the face of governmental restrictions that
classi" ed strong forms of encryption as munitions. The most notable juridi-
cal case in these struggles was Bernstein v. U.S. Department of Justice. The
battles started in 1995 after a computer science student, Daniel J. Bernstein,
sued the government to challenge international traf" c in arms regulations,
which classi" ed certain types of strong encryption as munitions and hence
subjected them to export controls. Bernstein could not legally publish or
export the source code of his encryption system, Snuf2 e, without registering

1 7 0 C H A P T E R 5

as an arms dealer. After years in court, in 1999 the judge presiding over the
case concluded that government regulations of cryptographic “software and
related devices and technology are in violation of the First Amendment on
the grounds of prior restraint.”10

What is key to highlight is how neither Salin’s article nor the Bernstein
case questioned copyright as a barrier to speech. With the rise of free soft-
ware, developers began to launch a direct critique of copyright. The tech-
nical production of free software had trained developers to become legal
thinkers and tinkerers well acquainted with the intricacies of intellectual
property law as they became committed to an alternative liberal legal sys-
tem steeped in discourses of freedom and, increasingly, free speech. If the
" rst free speech claims among programmers were proposed by a handful
of developers and deliberated in a few court cases in the early to mid-
1990s, in the subsequent decade they grew social roots in the institution
of the F/OSS project. Individual commitments and intellectual arguments
developed into a full- 2 edged collective social practice anchored " rmly in
F/OSS technical production.

Unanticipated state and corporate interventions, though, raised the stakes
and gave this rival legal morality a new public face. Indeed, it was only be-
cause of a series of protracted legal battles that the signi" cance of hacker
legal expertise and free speech claims became apparent to me. I had, like so
many developers, not only taken their free speech arguments about code
as self- evident but also taken for granted their legal skills in the making of
these claims. Witnessing and participating in the marches, candlelight vigils,
street demonstrations, and artistic protests (many of them articulated in le-
gal terms), among a group of people who otherwise tend to shy away from
such overt forms of traditional political action (Coleman 2004; Galloway
2004; Riemens 2003), led me to seriously reevaluate the deceptively simple
claim: that code is speech. In other words, what existed tacitly became ex-
plicit after a set of exceptional arrests and lawsuits.

PO E T I C PR O T E S T

On October 6, 1999, a sixteen- year- old Johansen used a mailing list to re-
lease a short, simple software program called DeCSS. Written by Johansen
and two anonymous developers, DeCSS unlocks a piece of encryption by the
name of CSS (short for content scramble system), a form of Digital Rights
Management (DRM) used to regulate DVDs. CSS “is a lock rather than
block” (Gillespie 2007, 170) preventing a DVD with CSS from being played
on a device that has not been approved by the DVD Copy Control Associa-
tion (DVD CCA), the organization that licenses CSS to hardware manufac-
tures. Before DeCSS, only computers using either Microsoft’s Windows or
Apple’s OS could play DVDs; Johansen’s program allowed Linux users to

C O D E I S S P E E C H 1 7 1

unlock a DVD’s DRM to play movies on their computers. Released under
a free software license, DeCSS soon was being downloaded from hundreds
or possibly thousands of Web sites. In the hacker public, the circulation of
DeCSS would transform Johansen from an unknown geek into a famous
“freedom " ghter”; elsewhere, entertainment industry executives saw his
program as criminal and sought Johansen’s arrest.

Although many geeks were gleefully using this technology to bypass a
form of DRM so they could watch DVDs on their Linux machines, various
trade associations sought to ban the software because it made it easier to
copy and potentially pirate DVDs (Gillespie 2007). In November 1999, soon
after its initial spread, the DVD CCA and the MPAA sent cease- and- desist
letters to more than " fty Web site owners and Internet service providers,
requiring them to remove links to the DeCSS code for its alleged violation of
trade secret and copyright laws, and in the United States, the DMCA. Passed
in 1998 to “modernize” copyright for digital content, the DMCA’s most con-
troversial provision outlaws the manufacture and traf" cking of technology
(which can mean something immaterial, such as a six- line piece of source
code, or something physical) capable of circumventing copy or access protec-
tion in copyrighted works that are in a digital format. The DMCA outlaws
the traf" cking and circulation of such a tool, even if it can be used for lawful
purposes (such as fair use copying) or is never used. “Now with the DMCA,”
media scholar Tartelton Gillespie (2007, 184) perceptively notes, “circum-
vention is prohibited, meaning that the technologies that automatically en-
force these licenses are further assured by the force of the law.”

In December 1999, alleging trade secret misappropriation, the DVD CCA
" led a lawsuit against hundreds of individuals, and eventually two cases
from this batch moved forward.11 In 2000, the MPAA (along with other
trade associations) sued the well- known hacker organization and publica-
tion 2600 along with its founder, Eric Corley (more commonly known by
his hacker handle, Emmanuel Goldstein), claiming violation of the DMCA.12
Corley would " ght the lawsuits, appealing to 2600’s journalistic free speech
right to publish DeCSS. As frequently happens with censored material, the
DeCSS code at this time was unstoppable; it spread like wild" re.

Simultaneously, the international arm of the MPAA urged prosecution of
Johansen under Norwegian law (the DMCA, a US law, had no jurisdiction
there). The Norwegian Economic and Environmental Crime Unit took the
MPAA’s informal legal advice and indicted Johansen on January 24, 2000,
for violating an obscure Norwegian criminal code. Johansen (and since he
was underage, his father) was arrested and released on the same day, and
law enforcement con" scated his computers. He was scheduled to face trial
three years later.

Hackers and other geek enthusiasts discussed, debated, and decried these
events, and a few consistent topics emerged. The in2 uence of the court case
discussed above, Bernstein v. U.S. Department of Justice, was one such

1 7 2 C H A P T E R 5

theme. This case established that software could be protected under the First
Amendment, and in 1999, caused the overturning of the ban on the exporta-
tion of strong cryptography. Programmers could write and publish strong
encryption on the grounds that software was speech.

F/OSS advocates, seeing the DeCSS case as a similar situation, hoped that
the courts just might declare DeCSS worthy of First Amendment protection.
Consider the " rst message posted on dvd- discuss— a mailing list that would
soon attract a multitude of programmers, F/OSS developers, and activist
lawyers to discuss every imaginable detail concerning the DeCSS cases:

I see the DVD cases as the natural complement to Bernstein’s case. Just as
free speech protects the right to communicate results about encryption, so
it protects the right to discuss the technicalities of decryption. In this case as
well as Bernstein’s, the government’s policy is to promote insecurity to achieve
security. This oxymoronic belief is deeply troubling, and worse endangers the
very interests it seeks to protect.13

There were, it turned out, signi" cant differences between Bernstein and
DeCSS. In the Bernstein case, hackers were primarily engaged spectators.
Furthermore, many free software advocates were critical of Bernstein’s deci-
sion to copyright, and so tightly control, all of his software. In the DeCSS
and DVD cases, by contrast, many F/OSS hackers became participants by in-
jecting into the controversy notions of free software, free speech, and source
code (a language they were already 2 uent in from F/OSS technical develop-
ment). Hackers saw Johansen’s indictment and the lawsuits as a violation of
not simply their right to software but also their more basic right to produce
F/OSS. As the following call to arms reveals, many hackers understood the
attempt to restrict DeCSS as an all- out assault:

Here’s why they’re doing it: Scare tactic. [. . .] I know a lot of us aren’t politi-
cal enough— but consider donating a few bucks and also mirroring the source.
[. . .] This is a full- 2 edged war now against the Open Source movement:
they’re trying to stop [. . .] everything. They can justify and rationalize all
they want— but it’s really about them trying to gain/maintain their monopoly
on distribution.14

Johansen was, for hackers, the target of a law that fundamentally chal-
lenged their freedom to tinker and write code— values that acquired coher-
ence and had been articulated in the world of F/OSS production only in the
last decade.

Hackers moved to organize politically. Many Web sites providing highly
detailed information about the DMCA, DeCSS, and copyright history went
live, and the Electronic Frontier Foundation launched a formal “Free Jon
Johansen” campaign. All this was helping to stabilize the growing links

C O D E I S S P E E C H 1 7 3

between source code and software, largely because of the forceful arguments
that computer code constitutes expressive speech. Especially prominent was
an amicus curiae brief on the expressive nature of source code written by a
group of computer scientists and hackers (including Stallman) as well as the
testimony of one of its authors, Carnegie Mellon computer science profes-
sor David Touretzky, a " erce and well- known free speech loyalist. Just as
they dissected free software licensing, F/OSS programmers quickly learned
and scrutinized these court cases, behaving in ways that democratic theo-
rists would no doubt consider exemplary. Linux Weekly News, for example,
published the following overview and analysis of Touretzky’s testimony:

His point was that the restriction of source is equivalent to a restriction on
speech, and would make it very hard for everybody who works with com-
puters. The judge responded very well to Mr. Touretzky’s testimony, saying
things like [. . .] “I think one thing probably has changed with respect to
the constitutional analysis, and that is that subject to thinking about it some
more, I really ! nd what Professor Touretzky had to say today extremely per-
suasive and educational about computer code.” [. . .]
Thus, there are two rights being argued here. One is that [. . .] we have
the right to look at things we own and " gure out how they work. We even
have the right to make other things that work in the same way. The other is
that code is speech, that there is no way to distinguish between the two. In
the U.S., of course, equating code and speech is important, because protec-
tions on speech are (still, so far) relatively strong. If code is speech, then we
are in our rights to post it. If these rights are lost, Free Software is in deep
trouble.15

In this exegesis, we see again how free software developers wove together free
software, source code, and free speech. These connections had recently been
absent in hacker public discourse. Although Stallman certainly grounded
the politics of software in a vocabulary of freedom, and Bernstein’s " ght
introduced a far more legally sophisticated idea of the First Amendment for
software, it was only with the DeCSS case that a more proli" c and speci" c
language of free speech would come to dominate among F/OSS developers,
and circulate beyond F/OSS proper. In the context of F/OSS development
in conjunction with the DeCSS case, the conception of software as speech
became a cultural reality.

Much of the coherence emerged through reasoned political debate.
Cleverness— or prankstership— played a pivotal role as well. Prodromou,
a Debian developer and editor of one of the " rst Internet zines, Pigdog,
circulated a decoy program that hijacked the name DeCSS, even though it
performed an entirely different operation from Johansen’s DeCSS. Prodro-
mou’s DeCSS stripped cascading style sheets data (i.e., formatting informa-
tion) from HTML pages:

1 7 4 C H A P T E R 5

Hey, so, I’ve been really mad about the recent spate of horrible witch hunts
by the MPAA against people who use, distribute, or even LINK TO sites that
distribute DeCSS, a piece of software used for playing DVDs on Linux. The
MPAA has got a bee in their bonnet about this DeCSS. They think it’s good
for COPYING DVDs, which, in fact, it’s totally useless for. But they’re suing
everybody ANYWAYS, the bastardos!
Anyways, I feel like I need to do something. I’ve been talking about the whole
travesty here on Pigdog Journal and helped with the big 2 ier campaign here
in SF [. . .] , but I feel like I should do something more, like help redistribute
the DeCSS software.
There are a lot of problems with this, obviously. First and foremost, Pigdog
Journal is a collaborative effort, and I don’t want to bring down the legal shit-
storm on the rest of the Pigdoggers just because I’m a Free Software fanatic.
DeCSS is Born
So, I decided that if I couldn’t distribute DeCSS, I would distribute DeCSS.
Like, I could distribute another piece of software called DeCSS, that is per-
fectly legal in every way, and would be dif" cult for even the DVD- CCA’s
lawyers to " nd fault with. [. . .]
Distribute DeCSS!
I encourage you to distribute DeCSS on your Web site, if you have one. [. . .]
I think of this as kind of an “I am Spartacus” type thing. If lots of people dis-
tribute DeCSS on their Web sites, on Usenet newsgroups, by email, or what-
ever, it’ll provide a convenient layer of fog over the OTHER DeCSS. I " gure if
we waste just FIVE MINUTES of some DVD- CCA Web 2 unkey’s time looking
for DeCSS, we’ve done some small service for The Cause.16

Thousands of developers posted Pigdog’s DeCSS on their Web sites as 2 ak
to further confuse law enforcement of" cials and entertainment industry ex-
ecutives, since they felt these people were clueless about the nature of soft-
ware technology. Dozens of these developers (including Johansen) received
cease- and- desist letters demanding they take down a version of DeCSS that
was completely unrelated to the decryption DeCSS.

Clever re- creations of the original DeCSS source code (originally written
in the C programming language) using other languages (such as Perl) also
began to proliferate, as did translations into poetry, music, and " lm. A Web
site hosted by Touretzky, called the Gallery of CSS DeScramblers, show-
cased a set of twenty- four of these artifacts— the point being to demonstrate
the dif" culty of drawing a sharp line between functionality and expression
in software.17 Touretzky, an expert witness in the DeCSS case, said as much
in the introductory statement to his gallery:

If code that can be directly compiled and executed may be suppressed
under the DMCA, as Judge Kaplan asserts in his preliminary ruling, but
a textual description of the same algorithm may not be suppressed, then

C O D E I S S P E E C H 1 7 5

where exactly should the line be drawn? This web site was created to
explore this issue.18

Here is a short snippet (about one- " fth) of the original DeCSS source
code written in the C programming language:

void CSSdescramble(unsigned char *sec,unsigned char *key)
{
unsigned int t1,t2,t3,t4,t5,t6;
unsigned char *end=sec+0x800;
t1=key[0]^sec[0x54]|0x100;
t2=key[1]^sec[0x55];
t3=(*((unsigned int *)(key+2)))^(*((unsignedint *)(sec+0x56)));
t4=t3&7;
t3=t3*2+8- t4;
sec+=0x80;
t5=0;
while(sec!=end)
{
t4=CSStab2[t2]^CSStab3[t1];
t2=t1>>1;
t1=((t1&1)<<8)^t4;
t4=CSStab5[t4];
t6=(((((((t3>>3)^t3)>>1)^t3)>>8)^t3)>>5)&0xff;
t3=(t3<<8)|t6;
t6=CSStab4[t6];
t5+=t6+t4;
*sec++=CSStab1[*sec]^(t5&0xff);
t5>>=8;
}

Compare this fragment to another one written in Perl, a computer language that
hackers regard as particularly well suited for crafting poetic code because lon-
ger expressions can be condensed into much terser, sometimes quite elegant (al-
though sometimes quite obfuscated) statements. And indeed the original DeCSS
program, composed of 9,830 characters, required only 530 characters in Perl:

#!/usr/bin/perl - w
531- byte qrpff- fast, Keith Winstein and Marc Horowitz
<sipb- iap- dvd@mit.edu>
MPEG 2 PS VOB ! le on stdin - > descrambled output on stdout
arguments: title key bytes in least to most- signi! cant order
$_=‘while(read+STDIN,$_,2048){$a=29;$b=73;$c=142;$t=255;@
t=map{$_%16or$t^=$c^=($m=(11,10,116,100,11,122,20,100)
[$_/16%8])&110;$t^=(72,@z=(64,72,$a^=12*($_%162?
0:$m&17)),$b^=$_%64?12:0,@z)[$_%8]}(16..271);if((@

1 7 6 C H A P T E R 5

a=unx”C*”,$_)[20]&48){$h=5;$_=unxb24,join”“,@
b=map{xB8,unxb8,chr($_^$a[— $h+84])}@ARGV;s/ [. . .]
$/1$&/;$d=unxV,xb25,$_;$e=256|(ord$b[4])<<9|ord$b[3];$d=$d>
>8^($f=$t&($d>>12^$d>>4^$d^$d/8))<<17,$e=$e>>8^($t&($g
=($q=$e>>14&7^$e)^$q*8^$q<<6))<<9,$_=$t[$_]^(($h>>=8)+=
$f+(~$g&$t))for@a[128..$#a]}print+x”C*”,@a}’;s/x/pack+/g;eval

If Perl allows programmers to write code more poetically (in this case, being
terse) than other computer languages, Schoen took up the challenge of pub-
lishing a bona " de poem in the form of an epic haiku— 456 individual stanzas
written over the course of just a few days. Schoen, who was inspired by the
clever re- creations of DeCSS compiled in the gallery, wrote the poem to deliver
a stark and clear political message. The author asserts that source code is not a
metaphor or similar to expression but rather is expression, and he makes this
point by re- creating the original DeCSS program as a poem. This bit of poetry
is now well known among hackers as an exemplary hack for displaying the
cleverness that hackers collectively value. Schoen opens his poem by thank-
ing Touretzky and then moves immediately to abandon his “exclusive rights”
clause of the copyright statute, indexing the direct in2 uence of F/OSS licensing.

How to Decrypt a DVD: In Haiku Form
(Thanks, Prof. D. S. T.)

(I abandon my
exclusive rights to make or

perform copies of

this work, U. S. Code
Title Seventeen, section
One Hundred and Six.)

Muse! When we learned to
count, little did we know all

the things we could do

some day by shuf# ing
those numbers: Pythagoras

said “All is number”

long before he saw
computers and their effects,

or what they could do

by computation,
naive and mechanical

fast arithmetic.

It changed the world, it
changed our consciousness and lives

to have such fast math

C O D E I S S P E E C H 1 7 7

available to
us and anyone who cared

to learn programming.

Now help me, Muse, for
I wish to tell a piece of

controversial math,

for which the lawyers
of DVD CCA

don’t forbear to sue:

that they alone should
know or have the right to teach

these skills and these rules.

(Do they understand
the content, or is it just
the effects they see?)

And all mathematics
is full of stories (just read

Eric Temple Bell);

and CSS is
no exception to this rule.
Sing, Muse, decryption

once secret, as all
knowledge, once unknown: how to

decrypt DVDs.

Here, the author " rst frames the value of programming in terms of
mathematics along with its antagonists in the entertainment industry, in-
tellectual property statutes, lawyers, and judges— all of which use soft-
ware without recognizing, much less truly understanding, the embedded
creative labor and expressive value. This critique is made explicit through
a question: “Do they understand the content, or is it just the effects they
see?” The author then launches into a long mathematical description of
the forbidden CSS code represented in DeCSS. The expert explains the
“player key” of CSS, which is the proprietary piece that enacts the access
control measures:

So this number is
once again, the player key:

(trade secret haiku?)

Eighty- one; and then
one hundred three— two times; then

two hundred (less three)

1 7 8 C H A P T E R 5

Two hundred and twenty
four; and last (of course not least)

the humble zero

The writer states the access control mathematically, but using words. From
these lines alone a pro" cient enough programmer can deduce the encryp-
tion key. Thus the poem makes a similar point to the one made in the am-
icus brief— namely, that “at root, computer code is nothing more than text,
which, like any other text, is a form of speech. The Court may not know the
meaning of the Visual BASIC or Perl texts [. . .] but the Court can recognize
that the code is text.”19

The author then conveys that many F/OSS programmers conceive of their
craft as technically precise (and so functional) yet fundamentally expressive,
and as a result, worthy of free speech protection. In formally comparing
code to poetry in the medium of a poem, Schoen displays a playful form of
clever and recursive rhetoric valued among hackers; he also articulates both
the meaning of the First Amendment and software to a general public:

We write precisely
since such is our habit in

talking to machines;

we say exactly
how to do a thing or how

every detail works.

The poet has choice
of words and order, symbols,

imagery, and use

of metaphor. She
can allude, suggest, permit

ambiguities.

She need not say just
what she means, for readers can

always interpret.

Poets too, despite
their famous “license” sometimes

are constrained by rules:

How often have we
heard that some strange twist of plot

or phrase was simply

“Metri causa,” for
the meter’s sake, solely done

“to ! t the meter”?

C O D E I S S P E E C H 1 7 9

Although this haiku contains novel assertions (the tight coupling between source
code and speech), it is also through its inscription into a tangible and especially
culturally captivating medium (a hack with playful, recursive qualities) that the
assertion is transformed into a " rm social fact. Or to put it another way, here a
recondite legal argument makes its way into wide and public circulation as well
as consumption. This is how discourse meant for public circulation, as Warner
(2002, 91) has noted, “helps to make a world insofar as the object of address is
brought into being partly by postulating and characterizing it.”

FR E E DM I T RY!

The protests, poetry, and debate demonstrate how programmers and hackers
quickly became active participants in the drama of law and free software in the
digital age. This narrative process by which the law takes on a meaning to indi-
viduals through a period of contentious politics would accelerate thanks to the
simultaneous (although completely unrelated) DMCA infraction and arrest of
another programmer, Sklyarov. Because Sklyarov faced up to twenty- " ve years
in jail, programmers in fact only grew more infuriated with the state’s will-
ingness to police technological innovation and software distribution through
the DMCA. After Sklyarov’s arrest, protest against the DMCA and the hacker
commitment to a discourse of free speech only increased in emotional intensity,
and worked to extend and fortify the narrative process already under way.

This case would also prove far more dramatic than Johansen’s because
of the timing and place of the arrest. As mentioned earlier, Sklyarov was
arrested while leaving Defcon, one of the largest hacker conferences in the
world. During the conference, he had presented a paper on security breaches
and weaknesses within the Adobe e- book format. He purportedly violated
the DMCA by writing a piece of software for his Russian employer, Elcom-
soft, that unlocks Adobe’s e- book access controls and subsequently converts
the " les into PDF format. For the FBI to arrest a programmer at the end of
this conference was a potent statement. It showed that federal authorities
would act on corporate demands to prosecute hackers under the DMCA.

FBI agents attend Defcon, but there is a well- known, although tacit, agree-
ment that these agents, immediately identi" able by their L. L. Bean khaki
attire (normal Defcon regalia leans toward black clothing, T- shirts, and body
piercings), not interfere with the hackers. Despite their presence since the con
began in 1993, FBI agents had never arrested a hacker at Defcon. (Typically,
any arrests were local, and due to excessively rowdy and drunken behavior.)
The " rst- ever FBI arrest of a hacker signaled a one- sided renegotiation of the
relationship between legal authority and the hacker world.

On July 17, 2001, as Sklyarov was leaving the conference, federal agents
whisked him away to an undisclosed jail in Nevada. Weeks later, he was
released in the middle of a fervent Free Dmitry campaign. Sklyarov’s ar-
rest and related court hearings also prompted conversations built on those

1 8 0 C H A P T E R 5

Figure 5.1. So he’s a “hacker,” right?
Original pamphlet produced by Barrington King, http://www.

wyrdwright.com/sklyarov/ (accessed on September 10, 2010). Ex-
cerpt and photo taken from Free Version A, produced with ps2pdf

(pdf v 1.3 compatible) by Mike Castleman.

initiated by Johansen’s arrest and the resultant DeCSS lawsuits. But the Free
Dmitry campaign was organized more swiftly, was more visible, and directly
attacked Adobe, the company that had urged the US Department of Justice
to make the arrest. Its success, argues media scholar Hector Postigo (2010),
followed in part from how quickly activists organized the campaign, which
framed the issues in strong but accessible language, and actively sought to
distance the association between Dmitry and “hacker,” as an excerpt from
one of the organizing pamphlets makes clear, reinforced by the featured
family photo included in the 2 yer (see " gure 5.1).

Developers organized protests across US cities (such as Boston, New
York, Chicago, and San Francisco) and in Europe as well as Russia. San
Francisco, where I was doing my " eldwork at the time, was a hub of politi-
cal mobilization. Even though Sklyarov was in no fashion part of or identi-
" ed with the world of F/OSS development, local F/OSS developers were
behind a slew of protest activities, including a protest at Adobe’s San Jose
headquarters, a candlelight vigil at the San Jose public library, and a march
held after Linux World on August 29, 2001, that ended up at the federal
prosecutor’s of" ce.

At a fund- raiser that followed the march to the prosecutor’s of" ce, Stall-
man, the founder of the FSF, and Lessig, the superstar activist- lawyer, gave
impassioned speeches. Sklyarov, in a brief appearance, thanked the audience
for their support. The mood was electric in an otherwise- cool San Francisco
warehouse loft. Lessig, who had recently published his Code and Other
Laws of Cyberspace, a book that was changing the way F/OSS developers
understood the politics of technology, " red up the already- animated crowd
with charged declarations during his speech:

C O D E I S S P E E C H 1 8 1

Now this is America, right? It makes me sick to think this is where
we are. It makes me sick. Let them " ght their battles in Congress.
These million- dollar lobbyists, let them persuade Congressmen about
the sanctity of intellectual property and all that bullshit. Let them have
their battles, but why lock this guy up for twenty- " ve years?20

Most programmers agreed with Lessig’s assessment: the state had gone too
far in its uncritical support of the copyright industries. The protests had an
immediate effect. Adobe withdrew its support of the case, and eventually,
the court dropped all charges against Sklyarov on the condition that he
testify in the subsequent case against his employers, which he did. In De-
cember 2002, the jury in that case acquitted Elcomsoft, Sklyarov’s employer.
Johansen was acquitted just over a year later because the charges against
him were seen as too shaky for prosecution (the law he was arrested under
had nothing to do with DRM). Johansen still writes free software (including
programs that subvert DRM technologies) as well as a blog, So Sue Me, and
is admired among F/OSS hackers.

The DeCSS lawsuits were decided between 2001 and 2004, and even
though the courts were persuaded that the DeCSS was a form of speech,
they continued to uphold copyright law and deemed DeCSS un" t for First
Amendment protection. In one of the 2600 cases, Universal City Studios
Inc. v. Reimerdes, Judge Lewis A. Kaplan went so far as to declare that the
court’s decision meant to “contribute to a climate of appropriate respect for
intellectual property rights in an age in which the excitement of ready access
to untold quantities of information has blurred in some minds the fact that
taking what is not yours and not freely offered to you is stealing.”21

Many developers and hackers were deeply disappointed with these de-
cisions, which equated DeCSS with theft, and were shocked about how
narrow the consequences of Bernstein turned out to be. Many developers,
however, emboldened and galvanized by the collective outpouring they or-
ganized or witnessed, continued to assert, in passionate and often consider-
able legal detail, a different narrative to that of piracy and stealing. Schoen,
the DeCSS haiku author who questioned the cultural assumptions and ste-
reotypes at play with Judge Kaplan’s doctrinal reasoning, published one of
the most incisive accounts:

It’s hard to avoid the inherent sympathy Judge [Marilyn Hall] Pa-
tel bears toward Professor Bernstein (a speaker whose expression is
crushed by the awesome might of government bureaucracy) or the
equally apparent suspicion with which Judge Kaplan regards Emman-
uel Goldstein (a self- avowed hacker seemingly hell- bent on trouble).
These attitudes seem to me to be visible behind all the doctrinal ques-
tions; without committing myself for all time to a position in a conten-
tious area of legal theory, I would say that Judge Patel fought to show
why her case was a free speech case and that Judge Kaplan fought to

1 8 2 C H A P T E R 5

show why his was not. The question of which approach seems natural
would then be not primarily a question of legal doctrines, standards,
or precedents. It would instead be a conceptual, cultural battle: shall
programs be compared to epidemics of disease (evil, menacing, worthy
only of quarantine) or to books in libraries (the cornerstones of our
culture and our civilization)?22

Even if the court cases never declared source code as First Amendment
speech, the arrests, lawsuits, and protests cemented this connection. Hack-
ers, programmers, and computer scientists would continue to be motivated
to transform what is now their cultural reality— a rival liberal morality—
into a broader legal one by arguing that source code should be protectable
speech under the US Constitution and the constitutions of other nations.

CO N C L U S I O N

The law, in its formal and informal dimensions, clearly saturated this story,
acting as a double- edged sword that constrains and enables (and produces)
new possibilities. In an article on liberal law, Jane Collier, Bill Maurer, and
Liliana Suarez- Navaz note how liberal law, riddled with productive con-
tradictions, works to sanction an individuated identity. If “bourgeois law is
constructed as a system of rules that people are required to obey, whatever
their personal desires,” at the same time it also encourages “expressions
of individual contention or will, particularly in private contract that legal
agencies enforce” (Collier, Maurer, and Suarez- Navaz 1997, 4). While lib-
eral law certainly individuates its citizens (and private contract has been one
privileged route by which this is accomplished), free software is just one
example of what we might think of as a type of legal populism, especially
prevalent in the United States since the civil rights era, under which collec-
tives take the law into their own hands, and whereby the content of the law
matters as much as its formal attributes to recharge and change cultural
meaning. If the law, to use the formulation offered by Geertz (1983, 184), is
“part of a distinctive manner of imagining the real,” what I have shown in
this chapter is how the law becomes social reality, and in effect, constitutes
particular cultural meanings related to personhood, expression, creativity,
and thought.

This period of political protest and avowal, like much of hacker activ-
ity, is rooted initially in a defense of the existing hacker lifeworld, insofar
as intellectual property law in basic ways challenges the capacity of hack-
ers to do their work. Yet this defense does not merely leave the hacker
lifeworld untouched; it in fact transforms it in signi" cant ways, most es-
pecially by bringing hackers into more quotidian, though quite persistent,
contact with the language of law. Software developers have now deployed

C O D E I S S P E E C H 1 8 3

and also contested the law to recon" gure central tenets of the liberal
tradition— and speci" cally the meaning of free speech— to defend their
productive autonomy.

Many hackers, understood to be technologists, became legal thinkers and
tinkerers, undergoing legal training in the context of the F/OSS project while
building a corpus of liberal legal theory that links software to speech and
freedom. By means of lively protests and proli" c discussions, almost continu-
ously between 1999 and 2003, hackers as well as new publics debated the
connection between source code and speech. This link became a staple of
free software moral philosophy, and has helped add clarity in the competi-
tion between two different legal regimes (speech versus intellectual property)
for the protection of knowledge and digital artifacts. Now other actors, such
as activist lawyers, are consolidating new projects and bodies of legal work
that challenge the shape along with the direction of intellectual property law.

To be sure, the idea of free speech has never held a single meaning across
the societies that have valued, instantiated, or debated it. Yet it has come to
be seen as indispensable for a healthy democracy, a free press, individual
self- development, and academic integrity. It is, as one media theorist aptly
puts it, “as much cultural commonplace as an explicit doctrine” (Peters
2005, 18). F/OSS is an ideal vehicle for examining how and when techno-
logical objects, such as source code, are invested with new liberal meanings,
and with what consequences. By showing how developers incorporate legal
ideals like free speech into the practices of everyday technical production, I
trace the path by which older liberal ideals persist, albeit transformed, into
the present.

This is key to emphasize, for even if we can postulate a relation between
a product of creative work— source code— and a democratic ideal— free
speech, there is no necessary or fundamental connection between them
(Ratto 2005). Many academics and programmers have argued convincingly
that the act of programming should be thought of as literary— “a culture of
innovative and revisionary close reading” (Black 2002, 23; see also Chopra
and Dexter 2007). As with print culture of the last two hundred years (Johns
1998), this literary culture of programming has often been dictated and de-
lineated by a copyright regime whose logic is one of restriction. New free
speech sensibilities, which fundamentally challenge the coupling between
copyright and literary creation, must therefore be seen as a political act and
choice, requiring sustained labor and creativity to stabilize these connections.

Hackers have been in part successful in this political " ght because of their
facility with the law; because of years of intensive technical training, they
have not only easily adopted the law but also tinkered with it to suit their
needs. This active and transformative engagement with the law raises a set
of pressing questions about the current state of global politics and legal ad-
vocacy. As Jean Comaroff and John Comaroff (2003, 457) note, the modern
nation- state is one “rooted in a culture of legality”— a culture that in recent

1 8 4 C H A P T E R 5

years has become ever more pervasive, especially in the transnational arena.
Whether it is the constitutional recognition of multiculturalism across
Latin America and parts of Africa, or new avenues of commoditization like
the patenting of seeds, these new political and economic relationships are
“heavily inscribed in the language of the law” (ibid.). Given the extent to
which esoteric legal codes dominate so many " elds of endeavor, from phar-
maceutical production to " nancial regulation to environmental advocacy,
we must ask to what extent informal legal expertise, of the sort exhibited by
F/OSS developers, is a necessary or useful skill for social actors seeking to
contest such regimes, and where and how advocates acquire legal literacy.
Legal pedagogy keeps the issues of freedom present, sometimes through the
minuscule rede" nitions that occur through discussion, legal exegesis, and
the production of legal artifacts such as legal tests and guidelines. We must
remain alert to these amateur forms of legalism and the alternative social
forms that they imply.

C O N C L U S I O N

The Cultural Critique of

Intellectual Property Law

••

The door that is at least half- open, when it appears
to open onto pleasant objects, is marked hope.

— Ernst Bloch, The Principle of Hope

This book concludes by examining one of the most signi" cant, although
unintended, political consequences of F/OSS technical production: the

way it worked to fundamentally re" gure the politics of intellectual prop-
erty law. Using this material, I will revisit various themes raised throughout
previous chapters and draw some preliminary conclusions about the impor-
tance of what I designate here as a material politics of cultural action.

A paradox is at work here: How can a movement narrowly con" gured
around a technical craft to ensure software freedom help catalyze broader
political and economic transformations? Although F/OSS is foremost a tech-
nical movement based on the principles of free speech, its historical role in
transforming other arenas of life is not primarily rooted in the power of
language or the discursive articulation of a broad political vision. Instead,
it effectively works as a politics of critique by providing a living counterex-
ample, or in the words of free software’s most famous legal counsel, Eben
Moglen: “Practical revolution is based upon two things: proof of concept
and running code.”1 Returning to the terminology offered by Bruno Latour
(1993, 87), F/OSS production acts as a “theater of proof” that economic in-
centives are unnecessary to secure creative output— a message that attained
visibility as various groups were inspired to follow in the footsteps of free
software, and extend the legal logic of free software into other domains of
artistic, academic, journalistic, and economic production. Equally crucial
was that free software production was never easily shackled to a Right ver-
sus Left political divide, despite numerous attempts early in its history by its
critics to portray it as communist. In an era when identi" cation with Right

1 8 6 C O N C L U S I O N

or Left, conservative or liberal, often functions as a politically paralyzing
form of ideological imprisonment, F/OSS has been able to successfully avoid
such polarization and thus ghettoization.

Even if some hackers write and release free software for political rea-
sons, many developers tend to divorce an of" cial, broadly conceived po-
litical stance outside software freedom from their collective laboring (with
the exception of free software projects de" ned primarily by political aspi-
rations). This tight coupling between a particular version of freedom and
its instantiation in technology— mediated by licensing within F/OSS— paves
the way for certain sociopolitical travels. We might say that F/OSS has at-
tained such legibility not so much because of the material nature of source
code but rather because of licensing arrangements socially enveloping the
source code: F/OSS technology is free (as in beer as well as in speech) for
people to use, learn from, and modify.2 Further, because these technical and
legal artifacts are hinged on a politics of free software— and not traditional
Right- Left political divides— others have taken hold of free software artifacts
and recoded the meaning of freedom, access, and collaboration in new ways.

As the idea of free software spread into other domains of social life, it
gained signi" cant social visibility and notoriety. Through the legibility and
use of free software by multiple publics, its status has shifted dramatically.
What was once an odd, exceptional, and subcultural practice has acquired
a more authoritative position. Through its translations into different terms,
the very practice of free software, both as a mode of production and a set of
licenses, has been legitimated and brought from the subcultural background
into the political foreground (largely between 2000 and 2005). In this new
state of near ubiquity, free software has been well positioned to perform
an embedded critique of the assumptions that dominate the moral geog-
raphy of intellectual property law. If court case after court case, economist
after economist, and all sorts of trade associations stipulate that economic
incentives are absolutely (or self- evidently) necessary to induce labor and
secure creativity, hackers counterstipulate such views, not simply through
the power of rhetoric, but also through a form of collective labor that yields
high- quality software (software that happens to power much of the Inter-
net). Thousands and thousands of individual developers’ laboring to make
software libre constitutes a social performance of collective work that con-
trasts with as well as effectively chips away at some of the foundational
assumptions driving the continual expansion of intellectual property law.

In the rest of this chapter I describe how and why developers of the Debian
project insist on a narrow politics of software freedom, and then compare
F/OSS’s translation into three different spheres. Speci" cally, I examine how
F/OSS has become the corporate poster child for capitalist technology giants
like IBM, how it has served as a technological and philosophical weapon of
anticorporate activists in the Indymedia counterglobalization movement, and
" nally, how it has provided a pragmatic template for a nascent movement to

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 1 8 7

create an intellectual commons as part of a larger liberal critique of neoliberal
capitalism. I conclude by exploring in more detail how F/OSS has worked to
defamiliarize a set of assumptions concerning intellectual property law.

TH E PO L I T I C A L AG N O S T I C I S M O F F/OSS

During a discussion about the most common free software license, the GPL,
the following F/OSS developer described free software as an economy work-
ing in absence of copyrights: “Free software should create a sort of economy
in which things are the way they would be if there were no copyrights at
all.” He subsequently 2 eshes out how F/OSS developers conceive of software
freedom as a condition that also demands a form of restraint, neutrality, and
political disavowal:

In other words, when I write free software, I renounce the ability to
control the behavior of the recipient as a condition of their making cop-
ies or modifying the software. The most obvious renunciation is that I
don’t get to demand money for copies. But I also don’t get to demand
that the person not be a racist; I don’t get to demand that the person
contribute to the Red Cross. I don’t get to demand that the recipient
contribute to free software. I renounce the little bit of control over the
other person which copyright law gives me and in that way, I enhance
their freedom. I enhance it to what it would be without copyright law.3

To secure the practice of free software, in other words, this developer
claims that one must disassociate licensing along with its requirements from
other ideologies, demands, and af" liations, whether they are economic, re-
ligious or political.

This sort of political denial came as a great surprise at " rst. When I started
my " eldwork in 2001, the bifurcation of free software and open source was
already " rmly in place. Because open source represents an explicit and " rm
denial of not only politics but also even the ethics of software freedom, it led
me to believe that among Debian developers, I would encounter a political
sensibility exceeding software freedom. Because of their dense ethical com-
mitment to software freedom, which I covered in chapter 4, I was startled to
instead encounter a form of political disavowal whereby Debian developers
routinely police collective claims so as to prevent certain forms of political
associations from entering of! cial project policy and even at times informal
discourse. To put it another way, rather than an absolute distinction be-
tween politically engaged hackers and neutral corporate promoters of the
world of open source, I had encountered something more complicated that
blurred the well- known distinction between these two positions.

The strongest evidence of this disavowal emerges from what is rarely talked
about. Despite the proli" c discussions on project mailing lists covering an

1 8 8 C O N C L U S I O N

endless stream of topics— technical problems, project politics, licensing issues,
mentoring, and project policy— conversations about the role of Debian in sup-
porting widespread political change or social justice are nearly nonexistent—
except, of course, on the rare occasions when someone suggests otherwise.

For example, in the segment here, a developer is vehemently disagreeing
with another developer, who in 2003, suggested that Debian should of" -
cially participate in a World Social Forum event:

Look, when I signed up for this project and agreed to adhere to the Social
Contract, it didn’t say anything about Christianity, genetically modi" ed beef,
Microsoft, war in Iraq, or anything else like that. It said we agree to work on
Free Software. That’s the *only* common belief you’re guaranteed to " nd
among Debian developers.4

Most other developers participating in this heated, contentious conversation
over the project’s political scope agreed with this assessment and pounced
on the developer who had dared suggest the existence of a politics beyond
software freedom itself. Certainly some hackers write free software to ful" ll
political agendas, and more than ever, they simply cannot deny the vibrant
political life that they themselves have engendered. There is a small crop
of Debian developers who are also technology activists, channeling their
energies primarily toward social justice causes by running technology col-
lectives bearing unmistakably leftist names like, as mentioned earlier, Riseup
and May" rst (and using 100 percent free software to do so). But as part of
their commitments to freedom of expression and nondiscrimination, many
developers, especially in the context of large projects, divorce a traditional
and overt political stance outside software freedom from of" cial project dis-
course. Since each developer has their own personal opinion about politics
as well as personal reasons for writing free software, hackers believe those
sentiments should remain personal, and it behooves them not to attribute a
universal political message to their collective work. This message was voiced
by many in the email discussion on the World Social Forum, but was cap-
tured particularly well in the following statement:

You must realize that your personal views on other issues are political, and there-
fore inherently controversial, and are almost certainly not agreed to by every
other developer in this project. So let’s leave the other politics to the other organi-
zations devoted to them, and keep Debian focused on what it does best.5

Here we see how politics are deemed problematic because they are personal
and “inherently controversial,” and as such, should be left in the private, not
public realm. Pragmatically, the inclusion of politics writ large may generate
unnecessary project strife and interfere with the real task at hand: the pro-
duction of superior, free software, articulated as what Debian “does best.”

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 1 8 9

While Debian provides one of the most crystalline instances of how po-
litical disavowal emerges during the course of everyday social interaction, it
is by no means unique. Debian only stands out and serves as such a useful
ethnographic example because it is regarded as the project with the starkest
ethical standards. Many other software developers, especially those who
identify with the utilitarian principles of open- source software, are reluctant
to conceptualize their collective labor in ethical terms, much less expansive
political vocabularies (Ross 2006).

Avowed neutrality is of course a central feature of how segments of lib-
eralism function as a moral philosophy for it enshrines certain fundamen-
tal principles— notably tolerance and free speech— as residing outside the
sphere of the proper domain of politics (Brown 2006; Marcuse 1965). These
precepts are seen as apolitical vehicles of sorts, necessary for a healthy de-
mocracy and the marketplace of ideas. As Stanley Fish (2002, 219– 20) ar-
gues, one important idea animating free speech theory is that a “reward”
will follow free expression, which “will be the emergence of general and
self- evident truths.”6 By supporting free expression, hackers also seek to
secure a marketplace of ideas that will help establish self- evident truths.
Yet as the work of Kelty (2005, 2008) keenly demonstrates, these truths
are generally limited to what hackers love to obsess over: the functionality,
elegance, and worth of technology, and increasingly, the technical means of
connection— the Internet— that allows them to collectively associate.

As should be clear by now, I do not seek to reveal the fallacy of lib-
eral neutrality; the critical literature on liberalism has convincingly shown
the construction and consequences of such an ordering (Brown 2006; Fish
1994; Marcuse 1965). Nor am I assuming the perspective of normative lib-
eral theory that posits a clear connection between the marketplace of ideas
and democracy writ large. What I am more interested in is demonstrating
how these eclipses acquire meaning within technological social contexts (as
opposed to more formal jurisprudence or abstract liberal theory), and what
sorts of unexpected consequences they may have in transforming other do-
mains of social, political, and legal life.

Although this disavowal is intriguing in its own regard and could be dis-
cussed at further length, I have described it to get at one of the most crucial
results of the disavowal itself. Although some free software hackers disavow
politics among themselves, the effects of doing so have spilled far beyond
this realm of technoscience to transform the politics of intellectual property
law more generally. Take, for one, Microsoft’s repeated attempts in the early
2000 to tag free software and open source as a cancerous force of com-
munism.7 Despite the fact that some Microsoft employees tried to portray
F/OSS as fundamentally about polluting politics— usually some variant
of socialism or communism— ultimately and surprisingly, their red bait-
ing failed (surprisingly, as it is a remarkably effective political tactic in the
United States). What happened instead is that F/OSS became a beacon, and

1 9 0 C O N C L U S I O N

inspired a range of groups and actors to embrace some facet of free soft-
ware, allowing the idea and practices associated with free software to travel
far beyond the technological " eld. And when free software traveled, it also
garnered new and distinct types of associations.

TH R E E MO M E N T S O F TR A N S L AT I O N

In using the term translation, I invoke the work of Latour, who has exten-
sively theorized the microprocesses of social translation as part and parcel
of the extension of technoscienti" c networks. Latour’s model reveals how,
through a process of gradual enrollment, social actors recruit various al-
lies to extend a network of meanings, objects, and institutions. Though his
model pays attention to nonhuman actors (like artifacts or techniques), a
number of critics have argued that he puts too much weight on the capac-
ity of individuals to extend networks, thus overlooking how semiotic pro-
cesses may shape the conditions for translatability (Downey 1998; Haraway
1997). Donna Haraway (1997, 33), for instance, characterizes Latour’s
account as a perverse elevation of “heroic action.” My discussion below
makes it clear there are examples of human- initiated translation, notably
the lawyer- advocate Lessig; but there are other mechanisms at work, such
as the semiotics of translation.

To understand why and how the semiotics of translation matters in the
case of free software, Gyan Prakash’s study of science in the Indian colo-
nial era is instructive. While colonial rulers heralded science as a sign of
Western reason, ideologically used to justify their presence and undemo-
cratic rule, Prakash shows how this association between despotic rule and
technoscienti" c projects did not determine how others grasped as well as
represented the politics of science. Because the sign of science is able to
“spill beyond its de" nition as a body of methods, practices, and experi-
mental knowledge” (Prakash 1999, 7), a cadre of Indian nationalists re-
envisioned the meaning of technoscience instead to justify and direct an
anticolonial national liberation movement. In other words, the 2 exibility
of the sign of science was an important precondition for the radical redi-
rection of its meaning and the ability of Indian nationalists to take science
down a new political path.

The sign of science is not unique in having such semiotic 2 exibility; the
term freedom is loaded with a similar elasticity. Of course, as a number of
theorists insist, all language, words, and especially dialogue tend toward
a type of inde" niteness, openness, and multiplicity (Bakhtin 1981; Butler
1997; Silverstein 2004; Wittgenstein 1953). But since the sign of freedom (as
well as related ideals of liberal enlightenment, such as the public or science)
rests atop a trope of universalism, its ambiguity is accentuated, and so is its
ability to take on various con" gurations of meaning (Joyce 2003; Warner

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 1 9 1

2002). Furthermore, since the time of the Enlightenment, freedom has acted
as a master trope by which to prop up a vast array of political theories
and imaginaries, ranging from anarchism to socialism as well as liberalism
(Lakoff 2006; Hardt and Negri 2000), and also underwrites contemporary
notions of personhood (Rose 1999).

Drawing on these various insights, we might say that the ideas of free
software and freedom are similarly endowed with semiotic surplus and
elasticity. The meaning of free software is further speci" ed, although also
transformed, as different types of actors— journalists, educators, scientists,
artists, lawyers, and businesspeople— have taken the idea or objects of free
software to justify new practices. To put it in slightly different terms, F/OSS
acts as an icon as well as a transposable set of practices for openness, col-
laboration, and alternative licensing schemes that are tactically adopted by
others to justify divergent political and economic practices and imaginaries.
I now present three examples of F/OSS’s wider adoption, each of which has
also shifted the ways that many F/OSS developers conceptualize and engage
in F/OSS production.

OP E N- SO U R C E CI R C U L AT I O N W I T H I N CA P I TA L : IBM

Now a massive multinational corporation, IBM has dominated a wide array
of technology- based markets for more than a century. Deriving much of its
revenue through the tight control of its vast intellectual property holdings,
the company has boasted that it " les thousands of patents each year, or up
to 75 percent more than the next most active " ler.8 In 2000, IBM started
to sell the freely available OS GNU/Linux on its enterprise servers in place
of its internally developed proprietary operating system, AIX; this change
made big waves in the news.

In 2001, attempting to link its name with the growing surge of popular-
ity for Linux, IBM ran a multimillion- dollar advertising campaign featuring
three recognizable icons, the peace symbol, a heart, and Tux the GNU/Linux
penguin, that together conveyed the message of “Peace, Love, and Linux.”

Big Blue, as IBM is sometimes called, hired marketing " rms to perform
guerrilla marketing tactics as part of this ad campaign, such as chalking and
spray painting these icons on the sidewalks of several major cities (Kenigs-
berg 2001).

In this advertising campaign, IBM connected using and buying F/OSS-
based enterprise solutions with countercultural ideals of sharing, empower-
ment, and openness, on the one hand, and market agility and dominance, on
the other hand. This campaign drew from an already- established advertising
tradition, introduced and perfected by the Apple Computer television com-
mercials of the 1980s that equated computing with personal empowerment
and even social revolution.

1 9 2 C O N C L U S I O N

IBM’s adoption of F/OSS, while uniquely visible, represents a much larger
corporate espousal that translates F/OSS principles into a neoliberal lan-
guage of market agility, consumer choice, and an improved bottom line.
While F/OSS is not universally embraced in the corporate world, IBM’s in-
tegration of F/OSS is part of a much larger corporate push toward open-
source software as the basis of a service- based business model characteristic
of post- Fordist capitalism.

By leveraging volunteer work, IBM uses F/OSS as a labor- and resource-
saving measure. Yet they also hire a cadre of F/OSS developers to work
in- house on F/OSS software. In this respect, they are not unique: Red Hat
employs a number of the top Linux kernel developers, Hewlett- Packard
employs a small number of Debian developers, and other companies have
similar practices.9 Being neither totally independent nor completely di-
rected, F/OSS development in corporations represents a hybrid between
volunteer self- directed labor and paid, directed forms of labor that signi" -
cantly speed the pace of development for some F/OSS projects (Lerner and
Schankerman 2010).

As I have argued, while F/OSS developers are critical of a range of par-
ticular corporate practices (a lack of transparency, abuse of intellectual
property law, the tendency to obscure bugs, and onerous nondisclosure
agreements), many see the corporate adoption of F/OSS as proof that their
software is technically sound and superior. Many developers also personally
value salaried work developing F/OSS as it affords them the luxury of hack-
ing full- time on what was once only a hobbyist pursuit.

Figure 6.1. Peace, Love, and Linux
https://secure.2 ickr.com/photos/kino-eye/39036635/in/photostream

(accessed October, 23, 2011). Photo: David Tames.

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 1 9 3

It is clear that the licensing terms for F/OSS technologies allow IBM to
adopt, repackage, modify, and sell F/OSS (such as make peace with, make
love to, and sell Linux). The politically neutral form of freedom associated
with F/OSS facilitates the reenvisioning of what F/OSS means. In the process
of such adoptions and translation, new meanings are born, and the F/OSS
network is extended and made more visible. In particular, many of the IBM
Linux ads, like the one featuring Muhammad Ali that aired during the Super
Bowl of 2004, made Linux an unforgettable household name. In the ad, a
young blond boy (presumably Torvalds) is sitting in a sterile white room
watching a white computer featuring black- and- white footage of a young
but feisty Ali, who after a winning " ght, proclaims, “Never. Never make
me no underdog. And never talk about who’s gonna stop me. Well, there
ain’t nobody gonna stop me. I must be the greatest. I shook up the world.
I shook up the world. I shook up the world.” A much older Ali then sits in
front of the young boy and encourages him to “shake things up,” thereby
associating Linus and Linux with the underdog who won the " ght and ush-
ered in a technical revolution.10 While the money behind IBM’s advertising
machine makes its take on F/OSS especially prominent, the company holds
no monopoly on the interpretation of F/OSS’s meaning and importance, as
the next example illustrates.

ALT E R N AT I V E S T O CA P I TA L I S M: IMCS

Also bearing a three- letter acronym, the IMC once represented the vibrant
epicenter of a grassroots, people- based digital media journalism, whose mis-
sion and spirit could not be more antithetical to the goals of a corporate
mammoth like IBM.11 A worldwide volunteer collective of loosely af" liated
grassroots media Web sites and centers, IMC activists make and disseminate
locally generated media using various Web applications and tools. Indyme-
dia emerged out of historic struggles against corporate neoliberal globalism
policies. In the mid- to late 1990s, opposition against corporate globaliza-
tion began to take shape among various groups across the globe. Ya Basta!,
the Direct Action Network, and the Zapatista National Liberation Army
were notable players, while the World Trade Organization protests in the
streets of Seattle on November 30, 1999, registered a potent, distilled ver-
sion of this dissent in an area of the world where spectacular street dem-
onstrations had been in extended hibernation. Aware that the mainstream
media would rarely report on these denunciations by diverse constituents
(or would distort and sensationalize the protests), local activists decided
to self- disseminate the news and thus established the " rst IMC (Anderson
2012; Pickard 2006)

Politically minded geeks who were bred during the era of cheaper per-
sonal computers, homeschooled programming, and virtual interactions

1 9 4 C O N C L U S I O N

chose to use or write free software for the technical components of the
IMCs. Mailing lists and IRC, both widely available in free software versions
at the time, were used in many of the same ways as in F/OSS projects. They
were the main communication tools that facilitated conversation between
dispersed tech activists establishing centers in different locations like Wash-
ington, DC, Boston, London, and Seattle. Unlike most F/OSS projects, how-
ever, the IMC movement articulated itself as a primarily political endeavor
seeking to tackle broad structural problems:

It is our goal to further the self- determination of people under-
represented in media production and content, and to illuminate and
analyze local and global issues that impact ecosystems, communities
and individuals. We seek to generate alternatives to the biases inherent
in the corporate media controlled by pro" t, and to identify and create
positive models for a sustainable and equitable society.12

As part of their mission, the IMCs made a conscious choice to use and
develop free software to further their goals. Unlike IBM— which concep-
tualizes F/OSS production as a 2 exible means by which to extend market
presence and emphasize individual, consumerist messages of openness—
these activists saw it as a radical and independent alternative to the existing
corporate- driven market, and they used it to advance explicitly anticorpo-
rate political aims (Milberry 2009).

For example, the IMC tech working group (the segment of the IMC that
makes technical decisions about software choices, development, and licens-
ing, and implements and maintains the technical infrastructure of the IMC)
gave signi" cant weight to licenses when choosing a particular piece of soft-
ware. After a lengthy discussion through IRC, it was decided that copyleft-
style licenses (such as the GNU GPL) were preferable to noncopyleft free
software licenses (such as the Berkley Software Distribution license, which
do not require modi" ed versions to remain open), which in turn were pref-
erable to proprietary software. If the free software was not functional or
presented a security risk, then consideration of potential alternatives, along
a gradated list of software with increasingly less free licenses, was deemed
appropriate. These two quotes from the IRC discussion exemplify under-
standings of how F/OSS can be used as a revolutionary tool to further the
political goals of IMCs:

<leda>: I assume it is safe to say that we are making this choice in order
to try to choose the thing which has the least chance of bene! ting any
corporation, or any other form of hoarding in any way

<ozzy>: There is a wonderful pool of very well- developed free software out
there. Earlier, someone said that IMC is a revolutionary project, and
free software is a revolutionary tool for it. I stan[d] very ! rmly behind
using free software ! rst

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 1 9 5

In 2001, the IMCs formalized this commitment to F/OSS by including it as
one of the provisions in their networkwide Principles of Unity: “All IMCs
shall be committed to the use of free source code, whenever possible, in or-
der to develop the digital infrastructure, and to increase the independence of
the network by not relying on proprietary software.”13

Despite their of" cial stance on licensing, some leftists have trouble ac-
cepting the formulation of nondiscrimination lying at the heart of F/OSS
legal agreements. Some express discomfort or dismay that nondiscrimina-
tion, as articulated in F/OSS licensing, bars the type of control that would
allow Indymedia to keep its work from being exploited for purposes of
oppression (by the military, say) or corporate pro" t. In this guise, they echo
the Marcusian critique of liberalism’s “pure tolerance” of free speech (Mar-
cuse 1965). In the IRC conversation mentioned earlier, one Indymedia par-
ticipant expressed her anxiety about the decision to use free software: “I
disagree strongly with the [Debian] social contract: you can’t deny use of
your software to army, etc, in it.” Though the activist confuses the provision
of nondiscrimination as speci" c to Debian (when in fact it is the underlying
logic of all F/OSS licenses), her concern captures some of the incompatibili-
ties between leftist and more liberal notions of freedom and equality that
underwrite so much of free software’s legal culture.

Just as IBM is unlikely to foreground certain messages of freedom (in
particular, those critical of intellectual property), leftist activists such as
those from the Indymedia collectives tend to downplay or express concern
about the reality that F/OSS’s 2 exibility can be used to any end, even the
very instruments of oppression and discrimination (like the military or cor-
poration) they are trying to dismantle.

Along with activists, left- leaning academic writers, such as Michael Hardt
and Antonio Negri (2004), Alex Galloway (2004), and Johan Söderberg
(2007), are inspired by what they see as the radical political potential of free
software, and treat it as a living, breathing icon to re" ne their political sensi-
bilities and projects. Galloway, for instance, locates political potential in the
hacker capacity to leverage change by altering technology, code, and protocols.
In Multitude, Hardt and Negri (2004, 340) deploy the concept of open source
to clarify the democratic underpinnings of the political category of multitudes:

We are more intelligent than any one of us is alone. Open source col-
laborative programming does not lead to confusion and wasted energy.
It actually works. One approach to understanding the democracy of
the multitude, then, is an open- source society, that is, a society whose
source code is revealed so that we can work collaboratively to solve its
bugs and create new, better social programs.

Just as at IBM, the adoption, use, and support of F/OSS by activists and
its academic rearticulations give F/OSS much greater visibility within a

1 9 6 C O N C L U S I O N

completely different domain of production. In particular, it has extended the
networks where developers code into the spheres of activism and academics.
And just as some F/OSS developers work full- time on F/OSS, blurring their
volunteer pastime with their day job, other F/OSS developers have entered
the world of anticorporate political activism through the spread of F/OSS
into these channels (or vice versa).

It is also important to note that many IMC geeks are themselves hack-
ers, and a number of them are involved with free software projects such
as Debian. They may attend developer conferences or larger hacker gath-
erings, such as HOPE or the European outdoor festivals held every four
years. They represent a small but growing population among the techno-
logical elite of overt political a" cionados who direct their love of and pas-
sion for technology toward leftist political transformation as well as activism
(B. Coleman 2005; Juris 2008; Milberry 2009). Although more common in
Italy, Spain, and eastern Europe (often aligning with homegrown anarchist
politics), these leftist hackers have established hacker collectives across
North America, Latin America, and Europe. Through their exposure to the
Left, some hackers have come to appreciate their own role in F/OSS devel-
opment and advocacy as part of a wider leftist political sensibility (even
if they are reluctant to project these intentions onto other F/OSS develop-
ers, as this is discouraged— sometimes vehemently— in traditional F/OSS
projects). Nonetheless, the use of F/OSS as both a technology and icon to
justify other political projects has led some hackers to come to inhabit new
political subjectivities.

LI B E R A L CO M M O N S A N D L I M I T S T O CA P I TA L

In the course of the last decade, an explicit campaign calling for the creation
as well as protection of a knowledge commons and free culture has emerged
in certain parts of the globe, including North America, Europe, Latin Amer-
ica (especially Brazil), and parts of Asia, among others. The main actors
within this movement and sociopolitical debate— students, lawyers, geeks,
and other activists— construe access to public goods as the basis by which
to further create and extend the commons, a collective pooling of resources
made publicly accessible to many. The commons is often articulated as a
pool of shared resources that then acts as the fertilizer for further vibrant
cultural production and at times a healthy democracy. Among moderate
proponents, the commons is understood as compatible with private property
and a capitalist market, although certainly acting as a bulwark against some
of their worst abuses.14 The more liberal facet of the commons endeavor is
but one moment within a broader liberal critique of the neoliberal face of
capitalism. In an Atlantic Monthly article, reformed " nancial tycoon (now
also philanthropist) George Soros (1997) enunciated the basic terms of this
liberal critique: “the untrammeled intensi" cation of laissez- faire capitalism

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 1 9 7

and the spread of market values into all areas of life is endangering our open
and democratic society.”

The most in2 uential articulations and organizations within this nascent
commons movement have been those founded by Lessig (1999, 2001b; Cre-
ative Commons) and David Bollier (2002, 2009; Public Knowledge). These
in turn have helped spawn offshoots, such as the Students for Free Culture
movement, which is organized into clubs on colleges across North America.
These thinkers used the messages and example of F/OSS to build institutions
that support the production of open knowledge. In both writings and public
talks, Lessig and Bollier frequently refer to F/OSS as a source of inspiration
as well as justi" cation for their visions and projects.

For instance, in his enormously in2 uential book Code and Other Laws
of Cyberspace, Lessig (1999, 7) justi" es his argument that “the lack of own-
ership, the absence of property, the inability to direct how ideas will be
used— in a word, the presence of a commons— is key to limiting, or check-
ing, certain forms of governmental control,” and does so by relying heavily
on the example of “open code.” The nonpro" t organization he founded,
Creative Commons, has developed licenses and Web tools that are used
by individuals and organizations to “build an intellectual property conser-
vancy.”15 The model he drew from, unsurprisingly, was the GNU GPL:

Taking inspiration in part from the Free Software Foundation’s GNU
General Public License (GNU GPL), Creative Commons has devel-
oped a Web application that helps people dedicate their creative works
to the public domain— or retain their copyright while licensing them
as free for certain uses, on certain conditions.16

While Lessig and Creative Commons may represent the most prominent
of these liberal translations, there are many others. Bollier’s book Silent
Theft (the title plays off Rachel Carson’s Silent Spring, which crystallized
much thinking about the movement), for instance, contends that the estab-
lishment of a commons can limit the multinational plundering of knowledge
and culture. One example of an existing commons is F/OSS, which he treats
as an independent gift economy that is seen to coexist productively with
the market, although also providing protections against some of its least
savory elements. Benkler (2006), a legal theorist, has published a thorough
account of what he calls peer- to- peer production, liberally using the illustra-
tion of F/OSS to make an argument about the vibrancy of a new networked
economy— a mode of production that helps sustain and nourish classical
liberal political ideals, such as autonomy and freedom.

But more than any other actor, Lessig’s individual role in translating the
meanings of F/OSS deserves attention. He acted as a “spokesperson” for
many years— a role conceptualized in the work of Latour (1987, 1988) as
a prominent person who enrolls allies, builds institutions, changes percep-
tions, and translates the message of free software in ways that appeal to a
wider constituency. Just as Louis Pasteur served as the spokesperson who

1 9 8 C O N C L U S I O N

made the germ theory of illness compelling and intelligible to wider publics
(Latour 1993), Lessig has worked assiduously, passionately, and diligently
to bring out and successfully translate the artifacts and messages of F/OSS
from the con" nes of the hacker lab out to the " eld. He took a highly tech-
nical, sometimes- esoteric set of concerns shared among geeks and reenvi-
sioned them in a language accessible to wider groups: academics, lawyers,
Silicon Valley entrepreneurs, policymakers in Washington, DC, and activists.

As part of these efforts, Lessig spoke hundreds of times to various au-
diences (including geeks), has written dozens of articles and four books,
built the Creative Commons organization that provides alternative licensing
schemes to copyright, argued in the Supreme Court case Eldred v. Ashcroft
over copyright extensions heard in January 2003, personally taught a cadre
of lawyers at Harvard and Stanford universities about open code, and has
made the politics of technical architectures, once a fringe interest in aca-
demic circles, into a publicly relevant (and more intelligible) issue.

Of the ten times I have seen Lessig give lectures, the " rst was the most
indicative of the set of transformations that he helped initiate. At that meet-
ing, in 1999 in a packed room of University of Chicago law students, Les-
sig spoke of his then- recently published book Code. In it, he discussed the
“emergent” übergeeky technical movement called free software that relies
on different licensing mechanisms than those of intellectual property law.
Lessig had to proceed at the time with great caution with his argument that
open code, as he calls it, had come across a profound and important insight.
His idea that there were limits and alternatives to intellectual property law
was scandalous (and seen as just plain wrong), especially at the University of
Chicago law school— home to neoliberals, like Richard Epstein (2004), who
are deeply committed to private property and thus have been quite skepti-
cal of open source.17 When I spoke of the example of free software between
1999 and 2001, I routinely encountered similar skepticism or at least con-
fusion, with most people unable to even grasp how developers gave away
their code for free and asking me to repeat my description of free software
multiple times.

Today, Lessig and those who follow in his footsteps no longer have to
walk on eggshells. The discourse has so radically transformed that open
source is accepted as a social fact, known to many outside technological
circles. Lessig has helped utterly rede" ne the terms of engagement, such that
law students now learning about computer law and intellectual property
are compelled to cast their skepticism aside (at least for a short while) and
confront the existence of intellectual property alternatives.

Part of his success can be attributed to the fact that he, like F/OSS geeks,
is reluctant to portray his work as political; instead, he prefers to articulate
his position either in terms of a constitutionality that sits above the fray
of politics (Lessig 1999, 2001b) or in terms of the importance of cultural
preservation (Kelty 2004). In an arena where politics has acquired negative
connotations, Lessig’s avoidance of the term has allowed him to garner a

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 1 9 9

diverse audience and build the many alliances that have extended his work
around the globe. Like many of the developers I studied, he clearly operates
from a social imaginary that emphasizes one form of liberty— that repre-
sented by the Millian tradition stressing self- development and free speech—
over a more libertarian or even classic liberal position, in which the most
important value is protecting individual autonomy and private property.
While certainly not antithetical to property, Lessig (1999, 85) elevates what
he calls “Mill’s method” to identify all forms of coercion (government, mar-
kets, and norms) that impinge on an individual’s liberty.

Given Lessig’s own brand of political agnosticism, articulation of Millian
liberal values, and active presence in the geek public (speaking at rallies and
events, writing articles, and serving on the board of the Electronic Frontier
Foundation), it is not surprising that Lessig’s message has taken at least par-
tial hold in the geek community. Lessig relied on an accessible and compel-
ling vocabulary— such as the commons, public goods, and code is law— that
has been used by hackers to understand the nature of F/OSS knowledge
along with its broader social signi" cance. In large part because of Lessig’s
claims and analysis, developers can no longer deny the political effects of
their work, even if they do not fully accept Lessig’s politics, and even if some
of them are still unwilling to hinge their labor on grand narratives of justice,
socialism, and anticapitalism.

Lessig has also had a subtle though no less profound effect on the politi-
cal consciousness of some individual hackers. Largely by way of his work,
and in part bolstered by the dramatic dot- com bust of the late 1990s, he has
reined in the libertarian inclinations of some hackers, leading them toward
more liberal grounds that mirror his own personal biography. Lessig, raised
in a conservative family, was a faithful member of the Republican Party in
his youth. Placing enormous faith in the power of the individual and the
free market, he held a corollary distrust of the government. Much of this
changed during the early 1980s when he went to study at Cambridge Uni-
versity at the height of Margaret Thatcher’s neoliberal rule. As he explained
in a Wired article, “I remember going to Cambridge as a very strong liber-
tarian theist,” and “by the time I left I was not a libertarian in that sense,
and no longer much of a theist” (quoted in Levy 2002). Identifying with
workers’ rights, Lessig shed his “theism” to cast a critical eye toward mar-
kets and came to place more faith in the role of constitutional governments
as safeguards of democratic liberty.

The F/OSS movement has not yet been completely engulfed by Lessig’s
political claims of the commons. There have even been some important cri-
tiques of Creative Commons among advocate- lawyers and F/OSS develop-
ers who note how Creative Commons’ promotion of choice dilutes the clear
standard of freedom found in F/OSS (Elkin- Koren 2006; Hill 2005), and
edges quite close to neoliberal territory in advocating a language of choice.
Despite these differences, there is an af" nity between the two, and they act
to mutually reinforce each other’s goals, interests, and visions. In chartering

2 0 0 C O N C L U S I O N

a new nonpro" t that curates licenses modeled along the lines of F/OSS, high-
pro" le academic lawyers like Lessig have raised the credibility of the idea
of software freedom. Conversely, the success of F/OSS has served to dem-
onstrate the plausibility of Creative Commons’ idea. Through a process of
cross- pollination, many hackers have been inspired by the aims and actions
of Lessig, particularly those concerning the notion of a commons.

TH E PO L I T I C S O F DE FA M I L I A R I Z AT I O N

“Free software may have started as mere software,” explains Bollier (2009,
37), “but it has become [. . .] proof that individual and collective goals, and
the marketplace and the commons, are not such distinct arenas.” Despite the
fact that versions of this statement are routine, much less has been written
about the social mechanisms and political conditions under which F/OSS
could serve as such a powerful icon. In the previous section, I examined how
and under what conditions F/OSS has served as transposable model. I now
offer a few concluding thoughts about the effects of its adoption across a
wide domain of social arenas.

As already noted, a central feature of F/OSS is its political agnosticism (or
alternatively, its narrowly de" ned politics), which has facilitated its visible
spread and adoption in distinct arenas of life, allowing it to attain a position
where it can perform a political message. Because the practices of F/OSS
challenge economic incentive theory— assumptions that buttress intellectual
property law— it works as a form of cultural critique, tacit assumptions
converted to an explicit state of affairs. The moment that “any set of values,
and material forms comes to be explicitly negotiable,” observe Comaroff
and Comaroff (1992, 29), signals “the end of its naturalized state.”

Jacques Derrida’s work on language, culture, and law provides insight into
the realization and practice of copyleft. Along with a string of other theo-
rists, Derrida has demonstrated that any naturalized proposition (like het-
erosexuality) or social fact both presupposes and ultimately propagates what
it excludes (Butler 1997; Derrida 1978; Graeber 2001, 2004). It is just this
structural quality of language and cultural concepts that Stallman exploited
when he established the " rst F/OSS license, the GPL. What is important to
highlight here, though, is that while mainstream copyright discourse and re-
lated intellectual property laws necessarily presuppose their opposition, they
lack any metapragmatic indication of this presupposition. Most of copy-
right’s recent legal history in fact represents a vehement disavowal, through
economic incentive theory, of oppositional entailment of the copyright. The
GPL more clearly speaks a metapragmatic commentary on its oppositional
existence— an awareness even built into its informal name, copyleft, which
explicitly calls into being and thus points to its counterpart, copyright.

Noting this asymmetry is crucial if we are to understand how copyleft
licenses provide not only an alternative but also one that critically points to

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 2 0 1

the shortcomings of its inverted cousin— copyright. We might even push this
further, again with the help of Derrida, this time using insights from an essay
titled “Force of the Law: The Mystical Foundation of Authority.” Derrida
(1990, 12) identi" es what he calls the “performative” (and circular) nature
of liberal law, in which law gains its authority by virtue of being sanctioned
as law: “Laws keep up their good standing,” explains Derrida, “not because
they are just, but because they are laws.” By its very de" nition, law is en-
dowed with authority, as a force nonetheless sustained by the monopoly use
of state- sanctioned violence.

One might add that constitutional laws (like those of the First Amend-
ment and intellectual property in the United States) are often revered and
cherished, for being the foundational laws of nations, they carry with them
the extra weight of widespread patriotic respect, and are commonly invoked
during times of national crisis and rituals of commemoration. What is im-
portant to keep in mind is that Stallman, in the process of creating a legal
alternative to a constitutional mandate, bypassed the usual channels (the
courts and judges) by which one would question or change a law, especially
constitutional law. In so doing, he also partially punctured the authority of
the law, laying bare the assumption that only institutions of legal authority
(the courts and congress) have the right to alter the law. To be sure, lawyers
and legal council were and still are essential to making free software law
legally binding. The point, however, I am trying to convey is that Stallman
did bypass some traditional routes, such as lawsuits, in order to challenge
patents and copyrights, instead devising a license that cleverly reformatted
copyright by its very use.

The GNU GPL and similar copyleft licenses hence rupture the naturalized
form of intellectual property by inverting its ossi" ed, singular logic through
the very use of intellectual property.18 Let’s recall how F/OSS licenses work:
they simultaneously use and defy the core tenets of copyright law. To make
software open source or free software, one " rst applies a copyright and then
adds any one of a number of F/OSS licenses, which then disables the restric-
tive logic of copyright law. In this capacity, the use of these F/OSS legal
artifacts behave as a “destructive analysis of the familiar” (Sapir 1921, 94),
to use an old but famous anthropological phrase.

This move is not unlike Marx’s inversion of Hegelian idealism, which
retained Georg Wilhelm Friedrich Hegel’s dialectical method to repose his-
tory not as an expression of the “Absolute Idea” but instead as humanity’s
collective creation through labor. Using copyright as its vehicle, the copyleft
turns copyright on its head and in the process demysti" es copyright’s “abso-
lute” theory of economic incentive. In other words, free software practices
denaturalize the assumption that intellectual property instruments hold a
singular relationship between means and ends— a relationship that can only
be established by institutions of authority, notably courts and governments.

Without question, F/OSS hackers are prominent actors in a contempo-
rary debate, yet one that speaks to a longer history of contention over the

2 0 2 C O N C L U S I O N

de" nitions of individualism, free speech, property, and freedom within lib-
eral thought and practice. Probably more than any other current site of la-
bor, F/OSS production makes legible the present- day frictions between free
speech and intellectual property regulations that have grown so markedly
pronounced, in part because both sets of rights have undergone such signi" -
cant expansions over the last hundred years. If courts have altered the provi-
sions of intellectual property law so as to sanction and facilitate the conversion
of knowledge into private property, they have also altered the de" nition of
free speech laws so as to accord new protections to categories of expression
such as political speech and, in some instances, source code. Hackers have
spoken clearly in this debate, but primarily in their capacity as producers of
free and open software: they demonstrate in material action that they value
the right to express themselves, learn, and create technology over the right
to privatize the fruits of their labor— a site of labor that became particularly
prominent as other groups and actors, from radical anticapitalists to capi-
talist giants, have deployed free software.

Nested within this liberal conundrum is another closely related friction
over the de" nition of liberal individualism: What does it mean to be a free
individual? In the mid- nineteenth century, Mill helped to clearly de" ne the
debate when he reformulated the utilitarian philosophy of his upbringing
that also dominated the political landscape of Britain by infusing the utili-
tarian concept of selfhood with overtones of Romanticism. Unwilling to
reduce individuals to pleasure seekers of utilitarian theory, he rede" ned in-
dividuals as rational actors who cultivate their capacity for thought and
discrimination. This self- refashioning required a speci" c set of social and
affective conditions (judgment, critical debate, and the freedom to speak); it
engendered a stance of skepticism and justi" ed the political liberty to speak
freely. In the United States, John Dewey continued to give further shape
to Mill’s concerns. He launched a critique of “rugged individualism” and
laissez- faire liberalism. Dewey (1935, 88) insists that “the ultimate place of
economic organization in human life is to assure the secure basis for an or-
dered expression of individual capacity and for the satisfaction of the needs
of man in non- economic directions.” Today hackers are entangled in as well
as voice this dilemma over personhood, the meaning of freedom, markets,
and property, asserting that not every object of knowledge falls under a
neoliberal property regime.

Certainly the debate over the direction and limits of intellectual property
law is not over simply because of the rise of the F/OSS legal alternatives;
the mere existence of a material practice such as F/OSS has not fully muted
contentions based on universal principles or theories of human nature. In
some respects we can say that because of the forceful appearance of F/OSS,
a formidable politics has taken hold in the last decade, fueled by the rise of
technologies like peer- to- peer systems that encourage copying, translation,
and recon" guration. The politics of intellectual property law have over the
past ten years reached a contentious point— a political debate that cannot

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 2 0 3

fully or at least comfortably rely on abstractions, universal principles, or
naturalized rationalities but instead must entertain more local, pragmatic
stakes along with the reality of what people do, can do, or desire to do.

Under threat, these principles may clamor for more attention. For ex-
ample, in March 2005, on the eve of an important Supreme Court delib-
eration over the legality of peer- to- peer technologies, the New York Times
ran an editorial stating its position on intellectual property law by way of
arguments couched in a vocabulary of doom, liberal progress, and natural-
ization: “If their work is suddenly made ‘free,’ all of society is likely to suf-
fer. [. . .] The founders wrote copyright protections into the Constitution
because they believed that they were necessary for progress.”19 By invoking
the country’s founders and tropes of progress, this message sought to reas-
sert the naturalness of these propositions precisely when they were most
under threat.

The battle over the proper scope of intellectual property law thus contin-
ues to rage worldwide. Nonetheless, by virtue of the fact that one can point
to a living practice that unsettles arguments based on abstract principles, the
latter tend to lose some of their ef" cacy. On this basis, policy and law can
perhaps be more easily channeled away from universal claims, and entertain
local, pragmatic stakes while addressing the reality of what people do, can
do, or desire to do. As Helen Nissenbaum (2004, 212) has maintained, we
are drawn to the example of hacker activity because hackers “represent a
degree of freedom, an escape hatch from a system that threatens to become
overbearing.”

Rendered visible, the F/OSS example has been utilized by many scholars
and lawyers as a powerful justi" cation for balancing the current system,
even as other activists and educators shore up their own claims not within
the pages of books but instead by building alternatives (Benkler 2006; Bol-
lier 2002; Lessig 1999). The formal attributes of this critical politics of
defamiliarization should immediately strike a resonant chord with anthro-
pologists, whose work is often conceptualized in terms of a politics of de-
naturalization. For most of the last century, anthropological knowledge has
been marshaled to unsettle essentialist and universal assumptions about hu-
man behavior through cross- cultural and comparative examination (Benedict
1959; Marcus and Fisher 1986; Mauss 1954; Sahlins 1976). The disciplin-
ary vehicle for this is a work of speech: the narrative of ethnography. What I
" nd interesting is that F/OSS, among many other things, functions as a form
of critical ethnography writ large. It exempli" es what George E. Marcus and
Michael Fisher (1986, 139) call “defamiliarization” [. . .] by “cross- cultural
juxtapositioning.” In the case of F/OSS, such juxtaposition arises from an
accidental cultural practice and not a discursive anthropological one.

In emphasizing this performative and critical dimension of F/OSS, I am
echoing a common theme within a rich body of anthropological and socio-
logical theory (Comaroff 1985; Gilroy 1993; Hebdige 1979; Martin 1998;
Ong 1987; Scott 1985; Taussig 1980, 1987). This literature has compellingly

2 0 4 C O N C L U S I O N

shown that the scope of political transformation far exceeds intentional
political action, which has been the traditional focus of political theory,
activists’ perceptions, governmental programs, and even much of critical
democratic thought. F/OSS hackers, in other words, have not helped usher
in social change primarily by organizing in order to change the world,
standing and speaking on the political soapbox, or demanding legislative
changes (although some free software developers do engage in these politi-
cal forms). Instead, as noted above, they speak primarily in their capacity as
F/OSS producers.

Following the work of theorists of publics, politics, and carnival (Stal-
lybrass and White 1987; Warner 2002), the important question to consider
is: Under what conditions can nonrhetorical, embodied action speak effec-
tively, become public, captivate an audience, offer critical insight, and move
an audience to join in its carnival of possibilities?

The answer does not lie in the formal or a priori nature of performativity;
it requires us to assess the interrelationship between a dominant political cli-
mate and the pragmatic, semiotic elements speci" c to a phenomenon under
investigation. In the case of F/OSS, I have argued that its political ambiguity
and replicable nature facilitate its ability to captivate a diverse audience,
which is then provoked into action because it has confronted a living piece
of evidence and a model for organizing similar endeavors. Sometimes lan-
guage alone is not capable of inspiring action, and, under certain historical
conditions, language is often robbed of the potential it holds to imagine
alternative realities.

Indeed, the F/OSS case reveals broader insights about what is possible in
the prevailing political atmosphere, especially in the United States, where
the media and other actors can dismantle, literally in the blink of an eye, the
import of a message or politics through spin, insuf" cient attention, or spec-
tacle (Kellner 2003; Postman [1985] 2006). The mass media, closely aligned
with imperatives of capital (McChesney 1997), routinely reduce events to
well- established ideological categories (in the United States, this is usually
along the lines of liberal versus conservative, and since 9/11, patriotic versus
antipatriotic, with red baiting also being a common tactic).20

While F/OSS was certainly covered extensively in this news, the media,
for the most part, did not reduce it to any simplistic ideological binaries.
Indeed, early media reports featured in the New York Times and Wired, for
example, seemed so surprised at the economic logic of free software, that
they faithfully and extensively reported as well as conveyed the very surprise
and even wonder that was also expressed by many individuals, including
hackers themselves, about this phenomenon, noting the pleasures and dif-
" culties of using open- source software.

Much of the early history of F/OSS in fact demanded a certain level of
skeptical and open experimentation on the part of developers and hackers,
and eventually other adopters of the software and legal ideas of F/OSS.

T H E C U LT U R A L C R I T I QU E O F I N T E L L E C T UA L P RO P E RT Y L AW 2 0 5

Initially, hackers themselves collaborated with each other without complete
conviction (or even a vocabulary) that such an approach could realistically
compete with software built under proprietary or “cathedral” models of de-
velopment. Only through the course of small progressions, partial successes,
frustrations, and a series of translations that expanded the F/OSS network
was this form of production apprehended temporally as a viable technical
modus operandi. Ultimately, when it gained visibility with wider publics (in
part through the circuits of capital and its politically agnostic character), a
range of actors turned to F/OSS to fuel other imaginaries outside the geek
public.

In drawing attention to F/OSS’s portability and lack of political af" lia-
tion as two elements that facilitate its politics of visibility, I am admittedly
raising a host of dif" cult questions that should be of interest to both aca-
demics and activists. For anthropologists and those interested in capturing
these processes of cultural critique represented by the F/OSS example, there
are a host of conundrums to be contemplated. The politics of defamiliariza-
tion that arises through the cultural practice is quite ephemeral, leaving few
traces. The shock waves induce a process of cultural rethinking and trans-
form practices in other arenas of social life. The nature of this shock is to
lose its shock value and sink back into the natural state of affairs as soon as
a set of practices are more or less stabilized. Thus, the task of a critical an-
thropology is to keep a mindful orientation toward these powerful yet elu-
sive processes of cultural contrast as they are unfolding so that the politics
of cultural defamiliarization can be more effectively known, acknowledged,
and perhaps even directed.

A number of other pressing questions about politics are provocatively
raised by the example of F/OSS’s politics: Must a politics of visibility rely on
the circuits of capital to make itself known in a public sense, and is the law
a political friend or foe? Can we realistically work outside these channels? If
so, how? And if we work within these channels, are there ways to be 2 exible
about some convictions, but " rmer about others, and secure the vision or
values being heralded, as the copyleft does? This of course is the copyleft’s
most striking element. It allows knowledge to travel and gain new meanings,
but since it is protected by a clever legal mechanism from the commodi" ca-
tion of dissent (Frank and Weiland 1997) and other viral corruptions, the
knowledge stays intact and accessible, recursively returning to its source,
the developer, and user community. Here I won’t provide answers to these
questions, but since they are so strongly suggested by the F/OSS case, I raise
them for further thought.

E P I L O G U E

How to Proliferate Distinctions,

Not Destroy Them

••

In 2006, Time magazine crowned social media and “you” as the person
of the year. Typical of many mainstream media representations, Time not

only latched on to the moniker Web 2.0 but celebrated it with breathless
hyperbole too:

It’s a story about community and collaboration on a scale never seen
before. It’s about the cosmic compendium of knowledge Wikipedia
and the million- channel people’s network YouTube and the online
metropolis MySpace. It’s about the many wresting power from the
few and helping one another for nothing and how that will not only
change the world, but also change the way the world changes. (Gross-
man 2006)

This quote treats Wikipedia, YouTube, and Myspace not only as inter-
changeable examples of community and collaboration but also as moral
solvents with the power to melt away existing power structures. Although
the hype may be more pronounced in this piece, the simple con2 ation of
these distinct digital domains is not unique to Time or even other journal-
istic pieces; it is simply one example of how Internet technologies between
2005 and the present have been imagined by academics, journalists, policy-
makers, and activists.

Starting in 2005, but continuing unabated today, many commentators
and critics alike have placed a range of digital phenomenon, including free
software, under the umbrella of Web 2.0. This term was " rst coined in 2005
by O’Reilly to differentiate contemporary technologies (wikis, blogs, and
embedded videos) from their immediate predecessors, such as email and
static Web pages. These second- generation technologies, he claimed, al-
lowed for more interactivity, 2 exibility, and participation than the earlier
ones. Since the term’s invention, it has not only become the governing meta-
phor by which to understand contemporary Internet technologies and the
social practices that cluster around them. It also has been stretched so far

2 0 8 E P I L O G U E

and so wide that it now encompasses software (blogs and wikis), corporate
platforms (Flickr, Twitter, Facebook, YouTube, and Myspace), projects and
nonpro" ts (Wikipedia, Debian, and Creative Commons), and collaborative
techniques (remixing and crowdsourcing).

There are certainly points of connection to be made between these do-
mains, technologies, practices, and projects. Yet this constant con2 ation ob-
scures far more than it reveals. When used in celebratory terms, Web 2.0
puts on equal footing a user who uploads a video on YouTube or a photo on
Flickr (corporate- owned, proprietary platforms) and a free software devel-
oper or even a Wikipedian who is part of a nonpro" t, collective effort. Many
academics and journalists who are critical of Web 2.0 often accept the as-
sumption smuggled within this discourse— namely, that these disparate phe-
nomenon belong in the same analytic frame in the " rst place. “It breaks my
heart,” writes one of the " ercest critics of contemporary computer currents,
Jaron Lanier (2010, 70), “when I talk to energized young people who idolize
the icons of the new digital ideology, like Facebook, Twitter, Wikipedia and
free/open/Creative mashups.” Lanier might be less perturbed if he knew that
those who embrace F/OSS and Wikipedia are frequently the " ercest critics
of the privacy violations and copyright policies of social network platforms
like Facebook.

Among other effects, this rampant lumping together obscures the com-
plex sociology and history of some digital projects— a surprising omission
given that a number of quite prominent citizen media and free software
projects, like Indymedia and Debian, were at the forefront of organizing
themselves into institutional forms years before the rise of so- called Web
2.0, by 2000 and as early as 1998. It was not simply that most journalists,
pundits, and many academics ignored this fact, though. This omission was
replaced with a countervailing story that suggested otherwise, alleging that
knowledge was being created by forces of mild disorganization whereby
individuals, acting in loose coordination with each other, led to novel forms
of collaboration. This vision reached prominence for the way it so perfectly
meshes with, and thus supports, dominant understandings of freedom,
agency, and individualism. There is no better example of this sentiment than
the title of Shirky’s enormously popular 2006 book Here Comes Everybody:
The Power of Organizing without Organizations. Although many of his
observations about digital dynamics are illuminating, and many of the ex-
amples he draws on, such as meet- up groups, remain informal, many others
that he discusses, such as Wikipedia and Linux, were by 2006, organized,
and as such, some type of organization.

These new institutions are not the large slumbering bureaucracies most
often associated with governments, the post of" ce, or big corporations.
In building what are new institutional forms, open- source developers and
Wikipedians usually seek to strike a balance between stability and open-
ended 2 exibility. In the process of doing so, many engender particular forms

H OW TO P RO L I F E R AT E D I S T I N C T I O N S , N OT D E S T ROY T H E M 2 0 9

of social value that include mutual aid, transparency, and complex codes
for collaboration along with other ethical precepts that help guide techni-
cal production. In the case of Debian— explored in detail in this book— its
policies, direction, and imperatives are decided by a collective that not only
creates software but also has been innovative, quite successfully so, in terms
of institution building. Just as signi" cant is the fact that free software licens-
ing ensures that the fruits of labor are equally available to all— a condition
unmet by many forms of crowdsourced labor, much less ones that unfold on
corporate and cloud- based platforms, such as Flickr, where collaboration is
said to 2 ourish, and yet where users can lose access to their data when and
if the company folds or takes down a service.

The politics of F/OSS, narrowly de" ned though they may be, are obfus-
cated and severely distorted when they are lumped in with Web 2.0. When
the organizational sociologies of these projects are ignored, it is far easier to
collapse them into the category of more informal, less coordinated forms of
production, thereby obscuring how these distinct forms of production ethi-
cally, politically, and economically function. “Observing participation with-
out any guide to its diversity,” argues Adam Fish and his colleagues (2011,
160), “is like watching birds with no sense of what distinguishes them other
than that they 2 y and squawk (when of course, many do neither).” In recent
times, scholars have started to unearth as well as describe the organizational
dynamics at play with free software (Kelty 2008), Wikipedia (Fuster Morell
2010; O’Neil 2009; Reagle 2010), and hacker anticapitalist technology col-
lectives (Anderson 2009; Juris 2008; Milberry 2009), and insist on analyti-
cally disaggregating the lumping that is so common when analyzing digital
media (Gillespie 2010; Fish et al. 2011).1

Many, however, continue to con2 ate different digital domains. For in-
stance, despite the astounding plurality exhibited by digital activism, it is
treated in starkly singular terms. Take, say, the widely circulated (and much
discussed) critique of the politics of digital media in a 2010 New Yorker
article titled “Small Change: Why the Revolution Will Not Be Tweeted,”
where author Malcolm Gladwell (2010) notes, “the evangelists of social
media seem to believe that [. . .] signing up for a donor registry in Silicon
Valley today is activism in the same sense as sitting at a segregated lunch
counter in Greensboro in 1960.” I share Gladwell’s deep skepticism of the
hype that envelops mainstream understandings of many social networking
platforms like Twitter and Facebook. I think it is imperative to discuss the
limits of activism based on weak social ties and the security risks in us-
ing corporate platforms. Yet his critique only works by way of silencing a
number of historical and contemporary examples. Digital interaction and
activism are not, as Gladwell suggests, inherently grounded in weak ties but
also can be the basis for socially deep ties, such as is the case for much of
F/OSS production— a domain that has fundamentally altered the politics of
access and intellectual property. Digital media has also played a critical role

2 1 0 E P I L O G U E

in fomenting and helping sustain more traditional social movements like the
counterglobalization protests (Bennett 2003; Juris 2008). To take a more
recent case, the digital entity Anonymous, part digital direct action, part hu-
man rights technology activism, and part performance spectacle, while quite
organizationally 2 exible, is perhaps one of the most extensive movements to
have arisen almost directly from certain quarters of the Internet (Coleman
2012a). Instead of differentiating between types and forms of digital activ-
ism, Gladwell, like so many, paints digital activism in starkly singular terms,
in the process relegating existing forms that do not conform to “slacktiv-
ism” into the dustbin of history, and unable to distinguish in the most basic
ways between forms of activism with distinct roots, forms of organization,
and effects.

Attention to these basic, sometimes- fundamental differences in digital
sociality and activism can help foster greater understanding of what digital
politics mean along with the range of possibilities they might have to of-
fer and their limits. We must be ruthless in how we differentiate the social
dynamics and formats of digital activism in order to more fully glean the
public as well as political lessons afforded by these worlds.

In the end, it is worth taking a cue from the world of free software in two
regards. It is, for one, a domain where developers balance forms of social-
ity and forces often treated as mutually exclusive: individualism and social
cooperation, utility and artistry, altruism and self- interest, organization and
disorganization, populism and elitism, and especially individualism and so-
cial cooperation. Hackers who are seen (and at times portray themselves) as
quintessentially individualistic often live this individualism through remark-
ably cooperative channels. This should not make us question the reality of
individualism, which is also culturally incarnated, but instead encourage us
to examine the assumption that this individualism precludes cooperation.
In fact, individualism frequently results in more cooperation, on a larger
scale than would otherwise exist. Second, what makes these projects so in-
teresting is not how they engender democracy writ large, or fundamentally
change the warp and woof of economic and social structures, but that col-
laborators make technology at the same time that they experiment in the
making of a social commonwealth; it is there where the hard work of free-
dom is practiced.

N O T E S

••

IN T R O D U C T I O N: A TA L E O F TW O WO R L D S

 1. https://www.gnu.org/copyleft/gpl.html (accessed September 22, 2011).
 2. It is now routine for anthropologists to unpack the effects of liberal formations by at-

tending to the fraught politics of multiculturalism and secularism, the establishment
of publics, the coconstruction of markets, marketing, and consumer desire, and the
political changes wrought by new national constitutions and neoliberal policies (see
Comaroff and Comaroff 2000, 2003; Ferguson and Gupta 2002; Haydn 2003; Mah-
mood 2004; Ong 2006; Povinelli 2002, 2006; Scott 2011). Despite this rich literature,
the in! uence of liberal values in the context of Anglo- European societies still tends
to " gure thinly or inconsistently, either as an external economic in! uence that shapes
cultural expressions, or more richly, as relevant to the discussion of secularism, re-
ligion, publics, and most especially, multiculturalism. The study of privacy and free
speech, for instance, has tended to come in normative, philosophical, and legal terms
(Bollinger and Stone 2002; Nissenbaum 2009; Rule 2009; Solove 2010). There is, how-
ever, a small but growing body of anthropological literature on liberalism and technol-
ogy (Helmreich 1998; Malaby 2009) as well as the anthropology of the press and free
speech (Boyer 2010; Keane 2009). For an enlivening historical account on liberalism
as a lived set of principles in mid- Victorian Britain, see Hadley 2010.

 3. Because the bulk of my research was conducted on Debian, a free software project, and
with developers involved with other free software projects, my analysis also tilts in the
direction of free over open- source software. And given how much attention has already
been placed on open- source over free software, it is key to add this neglected perspec-
tive. But much of this book clearly applies to open source, for while even if open- source
developers and projects de- emphasize a moral language of freedom (Chopra and Dex-
ter 2007), they still routinely advance liberal ideals in, for example, their commitments
to meritocracy and rational, public debate.

 4. I am indebted to the stellar cultural analysis of liberalism offered by Stuart Hall (1986),
who makes the compelling case that liberalism is not only a set of political creeds but
also exists as cultural common sense composed of a set of interconnected principles
that “hang together.” Hall’s de" nition is useful because he highlights some core fea-
tures (such as a mistrust of authority and an accentuated commitment to individual-
ism), yet he is careful not to pose a single logic to liberalism. He also argues that in its
historical and lived dimensions, liberalism has incarnated into what he calls “variants
of liberalism,” replete with differences and contradictions. These differences and con-
tradictions are still part and parcel of liberalism’s life, and are evident among hackers.

 5. A less humorous consequence of this ambivalence is the limited funding options avail-
able to students and researchers who choose to remain in North America for " eldwork
(with the exception of those studying indigenous communities). Not only are existing
funds nearly impossible to live on; there are few overall funding sources as well. So

2 1 2 N OT E S TO I N T RO D U C T I O N

even if we have managed to enlarge our " eld of inquiry, this is a case in which economic
constraint works to discourage researchers from walking down a recently opened path.

 6. For thoughtful contemplations on the method of participant observation and " eldwork,
see Clifford and Marcus 1986; Comaroff and Comaroff 1992; Faubion and Marcus
2009.

 7. Digital Millennium Copyright Act, 17 U.S.C. 1201(a)(1)(a).
 8. One of the most crystalline examples of this utilitarian justi" cation is provided in Harp-

er and Row, Publishers, Inc. v. Nation Enterprises, a Supreme Court case deliberated in
1985. The question at hand was whether the magazine, the Nation, was entitled under
the fair use doctrine to publish a three- hundred- word excerpt, in a thirteen- thousand-
word article, from President Gerald R. Ford’s twenty- thousand- word memoir pub-
lished by Harper and Row. The court ruled in favor of Harper and Row, upholding the
ideal that property rights promote a public bene" t by inducing creation. Sandra Day
O’Connor delivered the majority opinion portraying copyright as “the engine of free
expression.” Versions of this utilitarian rationale, in which Internet protocol (IP) is the
basis for harvesting “knowledge,” continue to be expressed and hold sway within the
context of an heightened neoliberal expansion of intellectual property rights, making
existing tensions between expressive and IP rights more palpable and acute than ever.

 9. The Silicon Valley geek entrepreneur, who I am not addressing in this book, aligns quite
closely with neoliberal aspirations. For a discussion of Web 2.0 technologies, entrepre-
neurs, and neoliberalism, see Marwick 2010.

 10. http://mbrix.dk/" les/quotes.txt (accessed April 10, 2007).
 11. http://www.loyalty.org/~schoen/ (accessed March 19, 2007).
 12. http://www.gnu.org/gnu/manifesto.html (accessed July 30, 2007).
 13. https://upload.wikimedia.org/wikipedia/commons/b/b7/Anti-sec_manifesto.png

(accessed, March 26, 2012).
 14. Editorial, “The Victor Spoiled,” 2600: The Hacker Quarterly 15, no. 4 (1998– 99): 4.
 15. Although my exploration remains hemmed to free software and may not be relevant to

all domains of hacking, there is certainly some overlap between what I describe and
instances of hacking unrelated to the world of free software.

 16. Gender also receives only cursory attention. The reasons for this omission are multiple,
but foremost, I believe far more substantial research on the topic is needed before quali-
" ed and fair judgments as to the complicated dynamics at play can be posed, especially
since analyses must interrogate wider social dynamics such as education and childhood
socialization that have little to do with free software projects. In the last two years, a
series of vibrant initiatives around diversity and gender have proliferated in the con-
text of free software, with tremendous support from the wider developer community—
something I have not been able to research adequately.

 17. While this book attends to a number of translocal aspects of F/OSS development, it by
no means captures the reality of all different places where free software has taken hold,
such as India, Vietnam, Peru, and Brazil. For instance, many free speech commitments
explored in this book are shared by Brazilian developers I worked with, even while the
general story of free software in Brazil and other parts of Latin America looks quite
distinct from what happened in the United States given how entwined it became with
national politics (Chan 2008; Schoonmaker 2009; Murillo 2009).

 18. The region, despite being dominated by high- tech capitalism, is by no means monolithic.
It is home to a range of distinct values, stretching from staid engineering commitments

N OT E S TO C H A P T E R 1 2 1 3

(English- Leuck 2002), to countercultural expressions (Turner 2006) and new age cur-
rents (Zandbergen 2010), to undoubtedly liberal (Malaby 2009) and neoliberal orienta-
tions (Marwick 2010).

CH A P T E R 1: TH E L I F E O F A FR E E SO F T WA R E HA C K E R

 1. Most of the developers I interviewed were between the ages of eighteen and thirty-
" ve, although there were a number over thirty- " ve years old (there were some under
eighteen who I interacted with but did not formally interview due to provisions in
my Institutional Review Board application). Thus, this life history is located very
much in time, with the narrative spanning the period between the late 1970s until the
present.

 2. Warez typically refers to commercial or proprietary software that has been cracked or
pirated, and therefore illegally circulated to the larger public (in the past on BBSs and
currently on the Internet). For this to happen, the software’s copy protection measure
must be deactivated. In contrast, shareware is copyrighted software that is released by
its author initially for free on a trial basis or under some other set of conditions.

 3. For decades, computer science was a branch of mathematics or class offerings were
scattered in different departments. Although MIT was home to many important com-
puter projects, for instance, it only began offering an undergraduate computer science
course in 1969. The " rst computer science department was established in 1962 at Pur-
due University, and it was not until the mid- to late 1970s and early 1980s when many
US universities started to establish stand- alone computer science departments (Ens-
menger 2010, 120– 21). See also “History of the Department of Computer Sciences at
Purdue University,” http://www.cs.purdue.edu/history/history.html (accessed Octo-
ber 23, 2011).

 4. These quotes are culled from my life history interviews.
 5. Ef" ciency can mean various things for programming/software, including running fast-

er, using less computing resources, or both.
 6. For a comprehensive history of the BBS era, see the excellent eight- part documentary

BBS: The Documentary by Jason Scott (2005).
 7. BBSs also played a prominent role among phreaks and underground hackers (Thomas

2003; Sterling 1992). Usenet, a large newsgroup service, was signi" cant for hackers as
well (Pfaffenberger 1996).

 8. FidoNet, established in 1984, was an independent mail and information transport sys-
tem that connected BBSs together.

 9. IRC happens on IRC servers (EFnet, Freenode, etc.) that run software that allow users
to set up “channels” and connect to them. There are a number of major IRC servers
around the world that are linked to each other. Anyone can create a channel, and once
created and populated with users, all others in the channel can see anything anyone
types in a given channel. Using IRC client software, a user can connect to multiple
servers at once, and join multiple channels, switching conversations by switching tabs
or windows. While conversation on the channel is public, one can also initiate multiple
private conversations. IRC has grown tremendously since it was " rst created in 1988. In
July 1990, IRC averaged at 12 users on 38 servers. Now there are thousands of servers,
and over 100,000 users on some servers. To give a sense of its growth, one of the more

2 1 4 N OT E S TO C H A P T E R 1

popular servers, EFnet, had 38,000 users in 1998, growing to 106,976 in 2004. For cur-
rent statistics, see http://www.hinner.com/ircstat/ (accessed August 2, 2011).

 10. For a detailed history of the relationship between Unix and Linux, see Kelty 2008.
 11. As a number of developers noted, the actual number ranged from twelve to forty de-

pending on whether one was doing a base install or a more elaborate one as well as the
size of the ! oppy (3.5 inch/1.44MB ! oppies, or 5.25 inch/1.2MB ! oppies).

 12. This is no longer a problem, but was potentially one in the 1990s. See the Linux refer-
ence guide for installing X window: “Be careful if manually editing values in the Moni-
tor section of /etc/X11/xorg.conf. Inappropriate values can damage or destroy a monitor.
Consult the monitor’s documentation for a listing of safe operating parameters.” http://
www.linuxtopia.org/online_books/centos_linux_guides/centos_linux_reference
_guide/s1-x-server-con" guration.html (accessed September 20, 2010).

 13. http://www.outpost9.com/reference/jargon/jargon_27.html (accessed June 5, 2009).
 14. http://web.bilkent.edu.tr/Online/Jargon30/JARGON_S/SUIT.HTML (accessed

June 5, 2009).
 15. Email on " le with the author.
 16. Email on " le with the author.
 17. While in the early to mid- 1990s the number of noncommercial free software applica-

tions was growing, many of the early Linux distributions were actually commercially
produced. In the early 1990s, one of the most popular was SLS, which many considered
to taint the good name of free software because it was riddled with bugs and false ad-
vertising. Murdock wrote that “these ‘distributors’ have a disturbing tendency to mis-
leadingly advertise non- functional or extremely unstable ‘features’ of their product.
Combine this with the fact that the buyers will, of course, expect the product to live up
to its advertisement and the fact that many may believe it to be a commercial operating
system (there is also a tendency not to mention that Linux is free nor that it is distrib-
uted under the GNU General Public License). To top it all off, these ‘distributors’ are
actually making enough money from their effort to justify buying larger advertisements
in more magazines; it is the classic example of unacceptable behavior being rewarded
by those who simply do not know any better. Clearly something needs to be done to
remedy the situation” (quoted in “A Brief History of Debian,” http://www.debian.org/
doc/manuals/project-history/ap-manifesto.en.html [accessed August 28, 2010]).

 18. http://www.debian.org/doc/manuals/project-history/ap-manifesto.en.html (accessed
July 29, 2011).

 19. For example: “Apache is an organic entity; those who bene" t from it by using it often
contribute back to it by providing feature enhancements, bug " xes, and support for
others in public newsgroups. The amount of effort expended by any particular indi-
vidual is usually fairly light, but the resulting product is made very strong. This kind
of community can only happen with freeware— when someone pays for software, they
usually aren’t willing to " x its bugs. One can argue, then, that Apache’s strength comes
from the fact that it’s free, and if it were made ‘not free’ it would suffer tremendously,
even if that money were spent on a real development team” (http://httpd.apache.org/
ABOUT_APACHE.html [accessed July 12, 2006]).

 20. The Bay Area Linux Events Web site, for example, listed eight different meetings/
events between March 1 and 8, 2005. See http://www.linuxma" a.com/bale/ (accessed
August 2, 2009). In the last " ve years, hacker workshop spaces, such as Noisebridge in
San Francisco, have been established in cities across Europe and North America.

N OT E S TO C H A P T E R 1 2 1 5

 21. Some of the " rst hacker cons were the Hackers Conference held in California (1984),
the Computer Chaos Club Congress held in Germany (1984), and Summercon held in
Saint Louis (1987).

 22. While no hacker con can be called a tame affair, they do, however, exist on a spectrum,
ranging from the large and wild, to more subdued and intimate affairs. Most hacker
cons mix socializing with hacking, gaming, and talks/panels, which span from the purely
technical to the fabulously silly, with many legal, political, and historical oddities and
talks in between.

 23. http://gravityboy.livejournal.com/35787.html (accessed July 2, 2009).
 24. The experience is quite different for organizers, of course, which I myself had the

“pleasure” of experiencing when I was on the local team for Debconf10, held at Co-
lumbia University in New York in August 2011. As an organizer, the conference was
still enjoyable, and even more intense, but also frustrating, frenetic, and much more
exhausting.

 25. A BOF is an informal discussion group session scheduled during a conference. Multiple
people have told me that the bird reference is meant to signify that hackers, like birds, ! ock
together. I have also been told that it may also refer to the fable by Hans Christian Ander-
sen to denote how an informal conversation can transform something small (like vague
or incipient ideas) into mature and well- formed ideas. See http://www.underthesun.cc/
Classics/Andersen/ThereIsNoDoubt (accessed July 29, 2011).

 26. During the course of my research, I attended Defcon 2002 (Las Vegas), Codecon 2002
(San Francisco), Debconf 2002 (Toronto), Debconf 2004 (Porto Alegre), Debconf 2006
(Oaxtepec, Mexico), Debconf 2007 (Edinburgh), Debconf10 (New York), LinuxWorld
2000/2001/2002 (Bay Area), Annual Linux Showcase 2001 (Oakland, CA), Usenix
2002 (San Francisco), Computer, Freedom, and Privacy 2002 (San Francisco), HOPE
2002/2004/2010 (New York), Forum Internacional Software Livre 2004 (Porto Alegre),
and What the Hack 2005 (Boxtel, Netherlands). I helped to organized Debconf11, held
in New York. Compared to many geeks I know, my attendance record on the confer-
ence circuit was fairly light to moderate. The following account is primarily based on
" eldwork during the many Debconfs that I attended, although it draws from some of the
other conferences as well.

 27. http://media.debconf.org/dc7/report/ (accessed August 2, 2011).
 28. http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=252171 (accessed March 25, 2005).
 29. For the purposes of full disclosure, I organized this informal history roundtable as a

BOF, attended by twenty- " ve people. I was inspired to do so, however, based on the fact
that so many informal conversations between developers over meals were precisely on
the “exchange of memory.” Debian developers also archive their history into a software
package that comes with Debian.

 30. Email on " le with the author.
 31. http://blog.madduck.net/debian/2007.06.25_debconf7 (accessed October 12,

2010).
 32. http://media.debconf.org/dc7/report/ (accessed October 12, 2010).
 33. https://gallery.debconf.org/main.php (accessed October 12, 2010).
 34. http://media.debconf.org/dc7/report/ (accessed August 2, 2011).
 35. http://media.debconf.org/dc7/report/ (accessed August 2, 2011).
 36. http://listas.softwarelivre.org/pipermail/debconf4/2004-June.txt (accessed August

2, 2011).

2 1 6 N OT E S TO C H A P T E R 2

 37. http://listas.softwarelivre.org/pipermail/debconf4/2004-June.txt (accessed August
2, 2011).

 38. http://media.debconf.org/dc6/report/ (accessed August 2, 2011).

CH A P T E R 2: A TA L E O F TW O LE G A L RE G I M E S

 1. For accounts of the rise of free software, see Kelty 2008; Moody 2001; Wayner 2000.
 2. This, however, does not mean that access makes ethical or pragmatic sense for all cul-

tural material and knowledge. For a discussion of the limits of access and circulation,
see Christen 2006, 2009; Coleman 2010.

 3. To be more speci" c, privacy is everywhere in shambles (Nissenbaum 2009; Rule 2009);
free labor is expropriated from many Net participants, and an ethic of play is easily co-
opted for the sake of pro" t (Scholz 2008; Terranova 2000); and a more exploitative side
of informational capitalism can be found among the global body shoppers and immigrant
programmers who are rarely given voice in mainstream depictions of digital media (Am-
rute 2008; Biao 2006). Closest to this project, the copyright alternatives proposed by free
software and free culture advocates should also not be elevated as a universal alternative
to be adopted by cultural groups worldwide given the different regimes around knowledge
access as well as circulation (Christen 2006, 2009; Coombe and Herman 2004; Ginsburg
2008).

 4. New technologies, such as the photocopying machine, raised many concerns in the
publishing industries over copyright law, leading President Ford in 1974 to establish the
National Commission on New Technological Uses of Copyrighted Works (CONTU)
to prepare guidelines on photocopying policy. Two years later, the copyright act was
amended to include many of the commission’s recommendations.

 5. http://digital-law-online.info/CONTU/ (accessed March 25, 2012).
 6. These changes granted " ve exclusive rights to copyright owners: the rights to make

copies of the work, make derivative works, distribute the work, publicly perform the
work, and display the work publicly. These exclusive rights were subject to narrowly
de" ned exceptions, such as fair use provisions. Along with these provisions, the copy-
right term was extended to the life of the author plus " fty years.

 7. This reversal was made possible by a combination of signi" cant changes in patent
policy and practices in conjunction with landmark legal decisions (Jaffe and Lerner
2004). For instance, the court in charge of hearing patent cases, the Court of Appeals for
the Federal Circuit formed in 1982, proved to be consistently propatent. By frequently
upholding patents, the courts also encouraged patent litigation, which increased nearly
50 percent in the 1980s and became a signi" cant source of revenue for at least some
technology " rms (Boyle 1996, 133).

 8. The monetary value provided by patents for the computer industry has been and still
is enormous. In the United States alone, the revenues from computer- related patents
amount to one hundred billion dollars. In 1999, IBM, the largest patent holder in the
world, made a pro" t of one billion dollars from patent licenses while it accrued a
record- breaking 2,756 new patents (Gleick 2000). In 2003, IBM boasted on its Web
site that it had earned 3,415 US patents, “breaking the record for patents received in
a single year and extending its run as the world’s most innovative company to eleven
consecutive years” (http://www-03.ibm.com/ibm/history/history/year_2003.html
[accessed September 8, 2011]).

N OT E S TO C H A P T E R 2 2 1 7

 9. Stallman, at the time still employed at MIT’s arti" cial intelligence lab, was able to
do this since MIT purchased the LISP OS from Symbolics. But he " rst had to reverse
engineer the program to understand its functionality and devise new solutions as the
recently revised copyright statute kept him from simply copying the source code. For a
detailed history, see Moody 2001.

 10. For a detailed history, see Kelty 2008. See also the conclusion in this book.
 11. The " rst version of his license was the GNU Emacs GPL, and by 1989, the FSF devised

a license that was not application speci" c: the GNU GPL. Don Hopkins, Stallman’s
friend and a user of FSF software, coined the term copyleft, which refers to a class of
licenses (such as the GPL). For this particular history, see Brate 2002, 256.

 12. http://www.usdoj.gov/criminal/cybercrime/CFAleghist.htm (accessed August 9,
2011). See also http://www.copyright.gov/title17/92appg.html (accessed August 9,
2011). For a detailed history of these transformations, see Marshall 1993.

 13. Despite the magnitude and importance of TRIPS, with its crystal- clear message that a
country’s legal restrictions on goods and information were a central precondition for
so- called free trade, much of its work had been accomplished earlier by the US- led bi-
lateral regulations of the 1980s, notably the General System of Preferences and Section
301 (see especially Drahos and Braithwaite 2002, 134). Many nations have yet to ful" ll
all the mandates.

 14. Commerce Department Information Infrastructure Task Force, “Intellectual Property
and the National Information Infrastructure: The Report of the Working Group on Intel-
lectual Property Rights,” September 1995, 10; cited in Clark 1996, 988.

 15. https://groups.google.com/forum/#!msg/comp.os.minix/dlNtH7RRrGA/SwRavC
zVE7gJ (accessed July 20, 2011).

 16. Robert Young, “Interview with Linus, the Author of Linux,” http://www.linuxjournal
.com/article/2736 (accessed November 8, 2010).

 17. During much of the 1980s, hackers and programmers did work together over long dis-
tances, especially on various FSF and other Unix applications. For example, while dif-
ferent versions of Unix were largely developed within the bounds of one institution
(such as Berkeley, Sun Microsystems, or Bell Labs), collaborative development was
important. Changes were made through the trading of patches” on newsgroups or tapes
were traded via the mail. The developments of Arpanet and Internet protocols through
the request for comment documents also represent an important long- distance collab-
orative effort (DeNardis 2009; Gitelman 2006)

 18. For a typical example, see Dobrzynski 1999. A group of New York Times reporters gath-
ered with Silicon Valley CEOs to discuss the trials and thrills of managing companies
in the “Internet era.”

 19. http://wp.netscape.com/newsref/pr/newsrelease558.html (accessed November 2002);
http://blog.lizardwrangler.com/tag/netscape/ (accessed August 9, 2011).

 20. http://www.catb.org/~esr/halloween/ (accessed September 25, 2010).
 21. http://www.ussg.iu.edu/hypermail/linux/kernel/9904.0/0332.html (accessed Au-

gust 9, 2011).
 22. I would like to thank Andrew Leonard, who raised this point with me many years ago.
 23. I " rst came across this quote in Litman 2001, 151 (emphasis added). Its original source

is Philips 2000.
24. http://web.archive.org/web/20010917030022/http://www.bsa.org/usa/press/

newsreleases/2001-08-30.692.phtml (accessed July 12, 2008; on " le with the author).
 25. International Intellectual Property Alliance, Special 301: Brazil, February 18, 2010, 141.

2 1 8 N OT E S TO C H A P T E R 3

CH A P T E R 3: TH E CR A F T A N D CR A F T I N E S S O F HA C K I N G

 1. Here is a little more information about the code. The “tr” in this code is a function
that translates all occurrences of the search characters listed, with the corresponding
replacement character list. In this case, the slash character delimits the search list, so the
list of what to search for is the asterisk character. The replacement list is the second as-
terisk character, so overall it is replacing the asterisk with an asterisk. The side effect of
this code is that the “tr” function returns the number of search and replaces performed,
such that by replacing all the asterisks in the variable $sky, with asterisks, the variable
$cnt gets assigned the number of search and replaces that happen, resulting in a count
of the number of stars in the $sky. What follows after the # symbol is a comment, a
nonfunctional operator found in most programs, theoretically supposed to explain what
the code does.

 2. These were once blog entries and no longer exist. These texts are on " le with the author.
Python and Perl are computer languages.

 3. The entries are judged on aesthetics, output, and incomprehensibility, and are only de-
cipherable by the most accomplished of Perl experts, but can undoubtedly be aestheti-
cally admired by all as a postmodern object of utter incomprehension and amusement.
For an insightful discussion of obfuscation in code, see Monfort 2008.

 4. In his engrossing ethnography, Graham Jones (2011) covers the way in which cunning,
cleverness, and inventiveness are learned, performed, valued, and embodied among the
magicians that he worked with in Paris.

 5. For a discussion of some of the tensions in the corporate world that arose due to the
perception of programmers as clever and idiosyncratic, and an excellent history of pro-
grammers, see Ensmenger 2010, especially chapter 3.

 6. http://www.ingen.mb.ca/cgi-bin/news.pl?action=600&id=10383 (accessed No-
vember 20, 2007).

 7. I would like to thank Jonah Bossewitch, who pushed me to think about humor in light
of the rationality of the computer more deeply.

 8. Some notable examples of populist formulations are Computer Lib by Ted Nelson
(1974) and Stallman’s “GNU Manifesto.” For examples of the elitist manifestation, see
Levy 1984; Sterling 1992; Borsook 2000.

 9. http://osdir.com/ml/linux.debian.devel.mentors/2003-03/msg00272.html (accessed
July 5, 2009).

 10. http://osdir.com/ml/linux.debian.devel.mentors/2003-03/msg00225.html (accessed
July 5, 2009).

 11. This is quite similar in logic to liberal notions of states of nature that posit forms of
individuality outside social relations. An interesting question to further explore is why
this view still holds such appeal even though it is most often only conceptualized in
these hypothetical terms.

 12. http://osdir.com/ml/linux.debian.devel.mentors/2003-03/msg00225.html (accessed
July 23, 2010). During interviews, this idea that programming could span the spectrum
from unoriginal functionalism to high art came up again and again. For example, one
programmer characterized it in the following way: “I think it can be art, but it is not
always. [. . .] If I had to pick a comparison, I would pick carpentry because carpen-
try always has that range. You can start with just making a bookcase or something
utilitarian all the way to creating something like creating a piece of art with wood.”
Developers explained their craft triangulated between math/science, engineering, and

N OT E S TO C H A P T E R 4 2 1 9

art. Engineering was usually at the apex, respectively tending toward the side of art or
science, depending on the idiosyncrasies and preferences of the programmer along with
the nature of the project.

 13. For instance, it is routine for project developers to thank users or nonmember develop-
ers for their contributions. By way of illustration, on the Subversion project, which
develops code- tracking software, out of the approximately eighty- seven full and partial
committees, " fty- " ve were thanked by name in a commit log message (that someone
else committed) before they became a committee themselves (as of April 25, 2005).

 14. Luser is a common intentional misspelling of loser. “A luser is a painfully annoying,
stupid, or irritating computer user. The word luser is often synonymous with lamer.
In hackish, the word luser takes on a broader meaning, referring to any normal user
(i.e. not a guru), especially one who is also a loser (luser and loser are pronounced the
same). Also interpreted as a layman user as opposed to power user or administrator”
(http://en.wikipedia.org/wiki/Luser [accessed September 9, 2011]).

 15. http://www.thinkgeek.com/tshirts/frustrations/3239/ (accessed March 21, 2006).
 16. http://lists.debian.org/debian-vote/2005/03/msg00610.html (accessed July 5,

2009).
 17. http://www.mail-archive.com/debian-vote@lists.debian.org/msg08500.html (ac-

cessed July 17, 2010).
 18. http://svn.red-bean.com/repos/kfogel/trunk/.emacs (accessed July 5, 2009).
 19. http://evans-experientialism.freewebspace.com/barthes06.htm (accessed Septem-

ber 17, 2011).
 20. I would like to thank Martin Langhoff, who suggested the name palimpsest for the

authorial tracking that occurs on these version control systems.
 21. Those hackers who use Berkeley Software Distribution licenses place more value on

“freedom of choice” than necessarily recursively feeding modi" ed code back into the
community of hackers. I would still like to point out, however, that by using a Berkeley
Software Distribution license, a hacker has still made a deliberate choice to keep their
code open and accessible to others. The difference is that the license does not mandate
this choice for others and thus adheres to a more negative/libertarian notion of liberty
than that of Mill’s.

CH A P T E R 4: TW O ET H I C A L MO M E N T S I N DE B I A N

 1. A proli" c literature in the sociology and anthropology of science fruitfully dissects how
professional identities along with ethical commitments are established during periods
of training (Good 1994), vocational practice (Gusterson 1998; Luhrmann 2001; Rabi-
now 1996), and are sustained by the coded and metaphoric language of professions that
work to elide ethical concerns (Cohn 1987). All these works have pushed me to think
about how ethical commitments are forged by a range of micropractices, many of them
narrative based.

 2. For the history and working of consensus among Internet engineers, see Kelty 2008;
Gitelman 2006; DeNardis 2009.

 3. For an analysis of similar dynamics among programmers, see Helmreich 1998; Levy
2011.

 4. The analysis of trust in the context of digital media interactions has so far been sporad-
ic, but it is starting to gain momentum. For an edited collection exclusively dedicated

2 2 0 N OT E S TO C H A P T E R 4

to the subject, see Ess and Thorseth 2011. For a discussion of trust and feelings of fel-
lowship in the context of gaming, see Malaby 2007.

 5. One can maintain a software package that one did not program from scratch. The per-
son who is the developer for the software is called the upstream author. In many cases,
the upstream author and maintainer are the same person, although there is no term to
mark this differentiation.

 6. The etiquette surrounding how to proceed with an NMU is more complicated than I am
able to elaborate here. There are policy guidelines that explain best practices, and from
time to time, the release manager can strongly encourage NMUs for the sake of focus-
ing attention on release critical bugs that must be " xed before a release can happen. For
a telling example of such exhortations, see Towns 2002.

 7. Perens was considered too much of a micromanager, but was respected for putting in so
much time and dedication, especially in guiding the project through the creation of the
Social Contract and DFSG.

 8. Since at the time the procedures were not well established or clear, they ran into proce-
dural problems, so one leader basically dropped out of the race, leaving the other runner
as the de facto Debian project leader.

 9. In addition to these more formalized positions, decisions made by informal ad hoc
groups permeate the entire organization.

 10. This is a complicated topic, but it is worth stating that one of the reasons that the Debian
project leader is discouraged from changing positions is because it would smack too
much like politics (i.e., bringing in your own cronies at the expense of those already
doing a good enough job).

 11. FTP refers to " le transfer protocol and used to be the main method by which developers
uploaded pieces of software to the repository. It is no longer the case that this is the only
method used, but the name FTP master has stuck.

 12. See Usenet Cabal FAQ, http://www.subgenius.com/big" st/hallscience/computers/
X0012_Internet_History.html (accessed July 26, 2011).

 13. http://lists.debian.org/debian-devel/2005/03/msg02062.html (accessed July 10,
2011).

 14. http://www.mail-archive.com/debian-vote@lists.debian.org/msg08500.html (ac-
cessed July 26, 2011).

 15. http://lists.debian.org/debian-project/2005/03/msg00142.html (accessed July 26,
2011).

 16. http://www.debian.org/devel/tech-ctte (accessed July 26, 2011).
 17. Ibid.
 18. To contain the sprawling size of this chapter, I am not providing an example of one of

these legendary bugs or how debate over technical issues becomes a place where ques-
tions of authority are raised. This must be left for another time. For two such legend-
ary Debian bugs, see http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=97671 (ac-
cessed July 28, 2011); http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=143825
(accessed July 28, 2011). The " rst one was over an obscure " le that violated the " le sys-
tem hierarchy standard (a policy detailing where pieces of programs should be placed
in the " le system) and whether it needed to be " xed in time for the impending release.
This turned into a lengthy, acrimonious debate between a famous package maintainer
and the release manager, and had as much to do with whose decisions should stand,
the maintainer or the release manager. As the maintainer observed in one part of the
voluminous writing dedicated to this one bug: “The issue is for me is twofold: about the

N OT E S TO C H A P T E R 5 2 2 1

package maintainer being empowered to manage his own bug list for triage purposes,
and about the limits of the release manager’s or another developer’s power to make
decisions for another developer.” The Technical Committee refused to hear the case,
the release manager did not budge on his recommendation, and " nally the maintainer
proceeded to ask for help to " x the problem.

 19. Many of the conversations over this “dis- ease” occurred over the private mailing list,
and as such, I am unable to quote any of the exact conversations. The mailing list is
only supposed to be used for sensitive material— for example, for announcing when a
developer will be on vacation. From time to time, some of the more interesting discus-
sions unfold there, and then someone suggests moving them to a public list. I have been
told about many such conversations, and some individuals have allowed me to see their
own personal posts to get some clarity over the issues. In 2005, the project voted to
move toward declassifying debian- private, but the process by which to do so has still
not been fully worked out. See “Debian Declassi" cation Delayed,” https://lwn.net/
Articles/394660/ (accessed October 25, 2011).

 20. While I emphasize some of the ethical and social elements of the NMP, it is important
to note that it is just as much a method of displaying technical pro" ciency as well as a
process of technical mentoring. In the " nal step of the NMP, applicants usually demon-
strate that they have the technical wherewithal to be trusted with the ability to integrate
software into the Debian archive and represent Debian to the world. This test is often
" lled with the presentation of a clean, policy- compliant piece of software and a bug-
free example of the type of work the applicant aims to put within the Debian distribu-
tion (e.g., a package), although this is complemented by a signi" cant series of technical
questions.

 21. Email on " le with author.
 22. http://article.gmane.org/gmane.linux.debian.devel.announce/605 (accessed July

31, 2011).
 23. Bakhtin, as Greg Nielsen (1998) argues, does not entirely repudiate Kant’s theory of

ethics but instead rejects his theory of action.

CH A P T E R 5: CO D E IS SP E E C H

 1. http://www.cs.cmu.edu/~dst/DeCSS/Gallery/decss-haiku.txt (accessed October 22,
2009).

 2. This comparison can only be made to do so much work. The law, being written in a
natural language, contains all sorts of nuance, assumptions, and linguistic ! exibility
not present in the much more formal and rigid language of software. And although pro-
grammers can acquire legal knowledge, they do not necessarily make good lawyers— a
profession that requires many other skills on top of a formal comprehension of the law.

 3. Email on " le with the author.
 4. Ibid.
 5. Email on " le with the author.
 6. http://lists.debian.org/debian-news/2002/msg00015.html (accessed September 10,

2011).
 7. http://lists.debian.org/debian-news/2002/msg00029.html (accessed September 10,

2011).
 8. http://www.debian.org/News/weekly/2002/48/ (accessed September 10, 2011).

2 2 2 N OT E S TO C O N C L U S I O N

 9. http://www.debian.org/News/weekly/2002/39/ (accessed September 10, 2011).
 10. Bernstein v. U.S. Department of Justice, 176 F.3d 1132 (1999).
 11. DVD Copy Control Association, Inc. v. Bunner, 116 Cal. App. 4th 241, 10 Cal. Rptr. 3d

185 (2004); Pavlovich v. Superior Court, 29 Cal. 4th 262, 268, Cal. Rptr. 2d 329, 334
(2002).

 12. Universal City Studios Inc. v. Reimerdes, 82 F. Supp. 2d 211 (2000).
 13. http://web.archive.org/web/20031124051048/cyber.law.harvard.edu/archive/

dvd-discuss/msg00000.html (accessed November 10, 2008).
 14. http://slashdot.org/comments.pl?sid=3644&cid=1340340 (accessed August 15,

2008).
 15. http://lwn.net/2000/0727/bigpage.php3 (accessed November 20, 2008).
 16. http://www.pigdog.org/decss/ (accessed February 5, 2009).
 17. http://www-2.cs.cmu.edu/?dst/DeCSS/Gallery/ (accessed November 10, 2008).
 18. Ibid.
 19. http://cryptome.org/mpaa-v-2600-bac.htm (accessed April 23, 2009).
 20. I recorded the speech and transcribed it. Speech on " le with the author.
 21. Universal City Studios Inc. v. Reimerdes, 82 F. Supp. 2d 211 (2000). This case was ap-

pealed by one of the defendants, Corley. In the subsequent case, Universal City Studios
Inc. v. Corley (273 F. Supp. 3d 429 [2001]), the presiding judges also af" rmed the
importance of this view insofar as they highlighted and quoted a longer version of this
statement.

 22. http://www.loyalty.org/~schoen/haiku.html (accessed September 10, 2011).

CO N C L U S I O N: TH E CU LT U R A L CR I T I Q U E O F IN T E L L E C T U A L PR O P E RT Y LAW

 1. http://emoglen.law.columbia.edu/publications/berlin-keynote.html (accessed Au-
gust 22, 2011).

 2. By beer, I mean strictly the source code. Even if source must be made available for
free, F/OSS is frequently bought and sold in the open market, but companies usually
are charging for the service, support, and labor as opposed to the knowledge.

 3. http://lists.debian.org/debian-legal/2003/03/msg00494.html (accessed August 10,
2010).

 4. Email on " le with the author.
 5. Email on " le with the author.
 6. For a rich intellectual history of the liberal free speech concept, see Peters 2005.
 7. See, for instance, Penenberg 2005.
 8. http://www.ibm.com/news/us/2002/01/10.html (accessed January 23, 2003).
 9. As of 2005, 90 percent of the top twenty- " ve kernel developers were paid to work on

the kernel. See http://www.newsfactor.com/story.xhtml?story_id=34392 (accessed
October 10, 2008). A large number of Apache developers also work for pay. In Debian,
a majority of developers are volunteers because of its large size.

 10. http://www.youtube.com/watch?v=sYT5VcPSjSg (accessed March 15, 2012).
 11. Although they no longer command the type of singular attention they once did, the

IMCs in fact inspired many others to follow in their direct footsteps and initiated count-
less other grassroots, citizen- led journalism projects (Anderson 2012).

 12. http://seattle.indymedia.org/contact.php3 (accessed August 24, 2011).
 13. http://doc.indymedia.org/view/Global/PrinciplesOfUnity (accessed July 25, 2006).

N OT E S TO E P I L O G U E 2 2 3

 14. There is also a radical and leftist embrace of commons discourse that deserves more at-
tention than I can provide here. Some of these thinkers have also drawn on the example
of free software. For some prominent articulations of this work, see Caffentzi 2010;
Federici 2004; Linebaugh 2010; Hardt and Negri 2009.

 15. Creative Commons, http://www.creativecommons.org/ (accessed December 20,
2010).

 16. http://creativecommons.org/about/history (accessed August 25, 2011).
 17. In his article “Why Open Source Is Unsustainable” in the Financial Times, Epstein

(2004) mulls over various reasons why open source will fail. Largely painting it as a
“commune” phenomenon, he maintains that it cannot scale and launches other criti-
cisms. His editorial was followed by a response from another lawyer, James Boyle,
which in turn produced yet another set of objections by Epstein.

 18. The justi" cations for intellectual property law are not singular but instead encompass
various competing theories, from commitments to moral rights, common in France, to
utilitarian justi" cations, common in the United State. Nonetheless, what they share is
the idea that these instruments in some form are necessary to induce creation.

 19. See “When David Steals Goliath’s Music,” March 28, 2005, http://www.nytimes
.com/2005/03/28/opinion/28mon1.html?ex=1115179200&en=2e53e0eca0c1d9
ac&ei=50 (accessed August 25, 2011). In addition to this, in the last couple years, two
think tanks, the Alexis de Tocqueville Institution (http://adti.net/) and the Progress
Freedom Foundation, have attacked open source on the grounds that intellectual prop-
erty law is necessary for freedom and a vital economy.

 20. For an analysis of how red baiting was successfully used to disable progressive US-
based media reform in broadcasting in the 1940s, see Pickard 2011.

EP I L O G U E: HO W T O PR O L I F E R AT E DI S T I N C T I O N S, NO T DE S T R O Y TH E M

 1. On the importance of recognizing and theorizing the diversity of digital media forms
and formats, see Fish et al. 2011.

R E F E R E N C E S

••

Abbate, Janet.
1999. Inventing the Internet. Cambridge, MA: MIT Press.

Abu- Lughod, Janet L.
1991. Writing against Culture. In Recapturing Anthropology: Working in the Pres-

ent, ed. Richard Gabriel Fox, 137– 54. Santa Fe, NM: School of American
Research Press.

Akera, Atsushi.
2001. Voluntarism and the Fruits of Collaboration: The IBM User Group, Share.

Technology and Culture 42 (4): 710– 36.

Amrute, Sareeta.
2008. Producing Mobility: Indian ITers in an Interconnected World. PhD diss., Uni-

versity of Chicago.

Anderson, C. W.
2009. Breaking Journalism Down: Work, Authority, and Networking Local News,

1997– 2009. PhD diss., Columbia University.
2012. Networking the News: The Struggle to Rebuild Metropolitan Journalism in

the Web Era, 1997– 2011. Philadelphia: Temple University Press.

Anonymous.
n.d. Anatomy of a Pirate. http://www.text" les.com/piracy/anatomy.txt (accessed

July 25, 2004).

Arendt, Hannah.
1998. The Human Condition. Chicago: University of Chicago Press.

Asad, Talal, ed.
1973. Anthropology and the Colonial Encounter. London: Ithaca Press.

Bakhtin, Mikhail.
1981. The Dialogic Imagination: Four Essays. Austin: University of Texas Press.
1984. Rabelais and His World. Bloomington: Indiana University Press.
1993. Toward a Philosophy of the Act. Austin: University of Texas Press.

Barthes, Roland.
1975. The Pleasure of the Text. New York: Hill and Wang.

Beebe, Barton.
2010. Intellectual Property Law and the Sumptuary Code. Harvard Law Review

123 (4): 809– 89.

2 2 6 R E F E R E N C E S

Bellah, Robert N., Richard Madsen, William M. Sullivan, Ann Swidler, and Steven
M. Tipton.

1985. Habits of the Heart: Individualism and Commitment in American Life.
Berkeley: University of California Press.

Benedict, Ruth.
1959. Patterns of Culture. Boston: Houghton Mif2 in.

Benjamin, Walter.
(1933) 1999. On the Mimetic Faculty. In Walter Benjamin: Selected Writings, Vol.

2: 1927– 1934, ed. Michael W. Jennings, 720– 22. Cambridge, MA: Belknap
Press of Harvard University.

(1936) 2005. The Work of Art in the Age of Mechanical Reproduction. http://www
.marxists.org/reference/subject/philosophy/works/ge/benjamin.htm (accessed
January 4, 2011).

1969. Theses on the Philosophy of History. In Illuminations: Essays and Re" ec-
tions, ed. Hannah Arendt, 253– 64. Berlin: Schoken.

Benkler, Yochai.
1999. Free as the Air to Common Use: First Amendment Constraints on Enclosure

of the Public Domain. New York University Law Review 74:354– 446.
2006. The Wealth of Networks: How Social Production Transforms Markets and

Freedom. New Haven, CT: Yale University Press.

Bennett, W. Lance.
2003. Communicating Global Activism: Strengths and Vulnerabilities of Net-

worked Politics. Information, Communication, and Society 6 (2): 143– 68.

Berger, Peter L., and Thomas Luckmann.
1967. The Social Construction of Reality: A Treatise in the Sociology of Knowl-

edge. New York: Anchor.

Berry, David M.
2008. Copy, Rip, Burn: The Politics of Copyleft and Open Source. London: Pluto

Press.

Biao, Xiang.
2006. Global “Body Shopping”: An Indian Labor System in the Information Tech-

nology Industry. Princeton, NJ: Princeton University Press.

Black, Maurice Joseph.
2002. The Art of Code. PhD diss., University of Pennsylvania.

Bollier, David.
2002. Silent Theft: The Private Plunder of Our Common Wealth. New York: Rout-

ledge.
2009. Viral Spiral: How the Commoners Built a Digital Republic of Their Own.

New York: New Press.

Bollinger, Lee, and Geoffrey Stone, eds.
2002. Eternally Vigilant: Free Speech in the Modern Era. Chicago: University of

Chicago Press.

R E F E R E N C E S 2 2 7

Borsook, Paulina.
2000. Cybersel! sh: A Critical Romp through the Terribly Libertarian Culture of

High Tech. New York: Public Affairs.

Bourdieu, Pierre.
1977. Outline of a Theory of Practice. Cambridge: Cambridge University Press.

Boyer, Dominic.
2010. Digital Expertise in Online Journalism (and Anthropology). Anthropological

Quarterly 83 (1): 73– 96.

Boyle, James.
1996. Shamans, Software, and Spleens: Law and the Construction of the Informa-

tion Society. Cambridge, MA: Harvard University Press.
2003. The Second Enclosure Movement and the Construction of the Public Do-

main. Law and Contemporary Problems 66 (Winter– Spring): 33– 75.

Brate, Adam.
2002. Technomanifestos: Visions from the Information Revolutionaries. New York:

Texere.

Brown, Bill.
2001. Thing Theory. Critical Inquiry 28 (1): 1– 22.

Brown, Wendy.
2006. Regulating Aversion: Tolerance in the Age of Identity and Empire. Princeton,

NJ: Princeton University Press.

Butler, Judith.
1997. Excitable Speech: A Politics of the Performative. New York: Routledge.

Caffentzis, George.
2010. A Tale of Two Conferences: Globalization, the Crisis of Neoliberalism, and

the Question of the Commons. Commoner. http://www.commoner.org.uk/
wp-content/uploads/2010/12/caffentzis_a-tale-of-two-conferences.pdf (ac-
cessed August 25, 2011).

Campbell- Kelly, Martin.
2003. From Airline Reservations to Sonic the Hedgehog: A History of the Software

Industry. Cambridge, MA: MIT Press.

Carneiro da Cunha, Manuella.
2009. “Culture” and Culture: Traditional Knowledge and Intellectual Rights. Chi-

cago: Prickly Paradigm Press.

Castells, Manuel.
2001. The Internet Galaxy: Re" ections on the Internet, Business, and Society.

Cambridge: Oxford University Press.

Ceruzzi, Paul E.
1998. A History of Modern Computing. Cambridge, MA: MIT Press.

2 2 8 R E F E R E N C E S

Chan, Anita
2008. Retiring the Network Spokesman: The Poly-Vocality of Free Software Net-

works in Peru. Science Studies 20 (2): 78– 99.

Chopra, Samir, and Scott Dexter.
2007. Decoding Liberation: The Promise of Free and Open Source Software. Ox-

ford: Routledge.

Christen, Kimberly.
2006. Tracking Properness: Repackaging Culture in a Remote Australian Town.

Cultural Anthropology 21 (3): 416– 46.
2009. Access and Accountability: The Ecology of Information Sharing in the Digi-

tal Age. Anthropology News (April): 4– 5.

Clark, Charles C.
1996. Clashing over Copyright: Is Intellectual Property Safe in the Age of the Inter-

net? CQ Researcher 6 (42): 985– 1008.

Clifford, James.
1986. On Ethnographic Allegory. In Writing Culture: The Poetics and Politics of

Ethnography, ed. James Clifford and George E. Marcus, 98– 121. Berkeley:
University of California Press.

1988. The Predicament of Culture: Twentieth- Century Ethnography, Literature,
and Art. Cambridge, MA: Harvard University Press.

Clifford, James, and George E. Marcus, eds.
1986. Writing Culture: The Poetics and Politics of Ethnography. Berkeley: Univer-

sity of California Press.

Cohn, Carol.
1987. Sex and Death in the Rational World of Defense Intellectuals. Signs 12 (4):

687– 718.

Cohn, Cindy, and James Grimmelmann.
2003. Seven Ways in Which Code Equals Law. In Code: The Language of Our

Time, ed. Christine Schipf and Gerfried Stocker, 20– 25. Berlin: Hatje Cantz.

Coleman, Biella.
2005. Indymedia’s Independence: From Activist Media to Free Software. http://

journal.planetwork.net/article.php?lab=coleman0704&page=1 (accessed
November 28, 2010).

Coleman, E. Gabriella.
1999. The Politics of Survival and Prestige: Hacker Identity and Global Production

of an Operating System. Master’s thesis, University of Chicago.
2004. The Political Agnosticism of Free and Open Source Software and the Inad-

vertent Politics of Contrast. Anthropology Quarterly 77 (3): 507– 19.
2010. Ethnographic Approaches to Digital Media. Annual Review of Anthropology

39: 487– 505.
2012a. Our Weirdness Is Free: The Logic of Anonymous— Online Army, Agents of

Chaos, and Seeker of Justice. Triple Canopy. http://canopycanopycanopy.com/
15/our_weirdness_is_free (accessed March 20, 2012).

R E F E R E N C E S 2 2 9

2012b. Phreaks, Hackers, and Trolls: The Politics of Transgression and Spectacle.
In The Social Media Reader, ed. Michael Mandiberg, 99– 119. New York:
New York University Press.

Coleman, E. Gabriella, and Alex Golub.
2008. Hacker Practice: Moral Genres and the Cultural Articulation of Liberalism.

Anthropological Theory 8 (3): 255– 77.

Collier, Jane, Bill Maurer, and Liliana Suarez- Navaz.
1997. Sanctioned Identities: Legal Constructions of Modern Personhood. Identities

2 (1– 2): 1– 27.

Collins, Randall.
2004. Interaction Ritual Chains. Princeton, NJ: Princeton University Press.

Comaroff, Jean.
1985. Body of Power, Spirit of Resistance: The Culture and History of a South

African People. Chicago: University of Chicago Press.

Comaroff, Jean, and John Comaroff.
1992. Ethnography and the Historical Imagination. Boulder, CO: Westview Press.
2000. Millennial Capitalism: First Thoughts on a Second Coming. Public Culture

12 (2): 291– 343.
2003. Re2 ections on Liberalism, Policulturalism, and ID- ology: Citizenship and

Difference in South Africa. Social Identities 9 (3): 445– 74.

Coombe, Rosemary J.
1998. The Cultural Life of Intellectual Properties: Authorship, Appropriation, and

the Law. Durham, NC: Duke University Press.

Coombe, Rosemary J., and Andrew Herman.
2004. Rhetorical Virtues: Property, Speech, and the Commons on the World Wide

Web. Anthropology Quarterly 77 (3): 559– 74.

Cover, Robert.
1993. Nomos and Narrative. In Narrative, Violence, and the Law: The Essays of

Robert Cover, ed. Martha Minow, Michael Ryan, and Austin Sarat, 95– 172.
Ann Arbor: University of Michigan Press.

Critchley, Simon.
2002. On Humor: Thinking in Action. New York: Routledge.

Crowston, Kevin, and James Howison.
2005. The Social Structure of Free and Open Source Software Development. First

Monday 10 (2). http://" rstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/rt/
printerFriendly/1478/1393 (accessed July 18, 2011).

Csikszentmihalyi, Mihaly.
1990. Flow: The Psychology of Optimal Experience. New York: Harper and Row.

DeNardis Laura.
2009. Protocol Politics: The Globalization of Internet Governance. Cambridge,

MA: MIT Press.

2 3 0 R E F E R E N C E S

Derrida, Jacques.
1978. Writing and Difference. Chicago: University of Chicago Press.
1990. Force of Law: The Mystical Foundation of Authority. Cardozo Law Review

11 (5– 6): 921– 1045.

Dewey, John.
1935. Liberalism and Social Action. New York: G. P. Putnam’s Sons.

Dibbell, Julian.
2006. Play Money: Or, How I Quit My Day Job and Made Millions Trading Vir-

tual Loot. New York: Basic Books.

Dickson, David.
1988. The New Politics of Science. Chicago: University of Chicago Press.

Dirks, Nicholas.
1992. Introduction to Colonialism and Culture, ed. Nicholas Dirks, 1– 26. Ann

Arbor: University of Michigan Press.

Dobrzynski, Judith.
1999. Online Pioneers: The Buzz Never Stops. New York Times, November 21, sec-

tion 3. http://www.nytimes.com/1999/11/21/business/ceo-round-table-online
-pioneers-the-buzz-never-stops.html (accessed August 10, 2011).

Donner, Wendy.
1991. The Liberal Self: John Stuart Mill’s Moral and Political Philosophy. Ithaca,

NY: Cornell University Press.

Douglas, Mary.
1975. Implicit Meanings: Essays in Anthropology. London: Routledge.

Downey, Gary.
1998. The Machine in Me: An Anthropologist Sits among Computer Engineers.

London: Routledge.

Drahos, Peter, with John Braithwaite.
2002. Information Feudalism: Who Owns the Knowledge Economy? London:

Earthscan.

Elkin- Koren, Niva.
2006. Exploring Creative Commons: A Skeptical View of a Worthy Pursuit. In The

Future of the Public Domain: Identifying the Commons in Information Law,
ed. Lucie Guibault and P. Bernt Hugenholtz, 325– 46. Leiden, Netherlands:
Kluwer Law International.

Elliott, Carl.
2003. Better Than Well: American Medicine Meets the American Dream. New

York: W. W. Norton and Company.

Ellison, Ralph.
1964. Shadow and Act. New York: Vintage.

English- Leuck, J. A.
2002. Cultures@SiliconValley. Stanford, CA: Stanford University Press.

R E F E R E N C E S 2 3 1

Ensmenger, Nathan L.
2010. The Computer Boys Take Over: Computers, Programmers, and the Politics

of Technical Expertise. Cambridge, MA: MIT Press.

Epstein, Richard.
2004. Why Open Source Is Unsustainable. Financial Times, October 21. http://

www.ft.com/cms/s/2/78d9812a-2386-11d9-aee5-00000e2511c8.html
(accessed August 25, 2011).

Ess, Charles, and May Thorbeth, eds.
2011. Trust and Virtual Worlds: Contemporary Perspectives. New York: Peter

Lang.

Ewick, Patricia, and Susan Silbey.
1998. The Common Place of the Law: Stories from Everyday Life. Chicago: Uni-

versity of Chicago Press.

Faubion, James D., and George E. Marcus, eds.
2009. Fieldwork Is Not What It Used to Be: Learning Anthropology’s Method in a

Time of Transition. Ithaca, NY: Cornell University Press.

Federici, Silvia.
2004. Caliban and the Witch: Women, the Body, and Primitive Accumulation.

Brooklyn: Autonomedia.

Ferguson, James, and Akhil Gupta.
2002. Spatializing States: Toward an Ethnography of Neoliberal Governmentality.

American Ethnologist 29 (4): 981– 1002.

Fish, Adam, Luis F. R. Murillo, Lilly Nguyen, Aaron Panofsky, and Christopher
M. Kelty.

2011. Birds of the Internet: Towards a Field Guide to the Organization and Gover-
nance of Participation. Journal of Cultural Economy 4 (2): 157– 87.

Fish, Stanley.
1994. There’s No Such Thing As Free Speech: And It’s a Good Thing, Too. Oxford:

Oxford University Press.
2002. The Dance of Theory. In Eternally Vigilant, ed. Lee C. Bollinger and Geoffrey

Stone, 198– 231. Chicago: University of Chicago Press.

Fischer, Michael J.
1999. Worlding Cyberspace: Towards a Critical Ethnography in Time, Space,

and Theory. In Critical Anthropology Now: Unexpected Contexts, Shifting
Constituencies, Changing Agendas, ed. George Marcus, 261– 304. Santa Fe:
School of American Research Press.

Florin, Fabrice, dir.
1986. Hackers: Wizards of the Electronic Age. 26 min. http://www.hackersvideo

.com (accessed July 19, 2011).

Fortun, Kim.
2001. Advocacy after Bhopal: Environmentalism, Disaster, New Global Orders.

Chicago: University of Chicago Press.

2 3 2 R E F E R E N C E S

Frank, Thomas, and Matt Weiland, eds.
1997. Commodify Your Dissent: Salvos from the Baf" er. New York: W. W. Norton

and Company.

Free Software Foundation.
(1996) 2010. Free Software De" nition. http://www.gnu.org/philosophy/free-sw.html

(accessed November 28, 2010).

Freiberger, Paul, and Michael Swaine.
2000. Fire in the Valley: The Making of the Personal Computer. New York:

McGraw- Hill.

Friedman, Ted.
2005. Electric Dreams: Computers in American Culture. New York: New York

University Press.

Fuller, Matthew, ed.
2008. Software Studies: A Lexicon. Cambridge, MA: MIT Press.

Fuster Morell, Mayo.
2010. Governance of Online Creation Communities. Provision of Infrastructure for

the Building of Digital Commons. PhD diss., European University Institute.

Gallaway, Terrel, and Douglas Kinnear.
2004. Open Source Software, the Wrongs of Copyright, and the Rise of Technol-

ogy. Journal of Economic Issues 38 (2): 467– 75.

Galison, Peter.
1997. Image and Logic: A Material Culture of Microphysics. Chicago: University

of Chicago Press.

Galloway, Alexander R.
2004. Protocol: How Control Exists after Decentralization. Cambridge, MA: MIT

Press.

Gancarz, Mike.
1995. The Unix Philosophy. Boston: Digital Press.

Gardiner, Michael.
2004. Wild Publics and Grotesque Symposiums: Habermas and Bakhtin on Dia-

logue, Everyday Life, and the Public Sphere. Sociological Review 52 (s1):
28– 48.

Gates, William Henry, III.
1976. An Open Letter to Hobbyists. http://www.blinkenlights.com/classiccmp/

gateswhine.html (accessed July 19, 2011).

Geertz, Clifford.
1977. The Interpretation of Culture. New York: Basic Books.
1983. Local Knowledge: Further Essays In Interpretive Anthropology. New York:

Basic Books.

R E F E R E N C E S 2 3 3

Ghosh, Rishab Aiyer.
1998. Cooking Pot Markets: An Economic Model for the Trade in Free Goods and

Services on the Internet. First Monday 3 (3). http://" rstmonday.org/htbin/
cgiwrap/bin/ojs/index.php/fm/article/view/580/501 (accessed July 27, 2011).

Gillespie, Tarleton.
2007. Wired Shut: Copyright and the Shape of Digital Culture. Cambridge, MA:

MIT Press.
2009. Characterizing Copyright in the Classroom: The Cultural Work of Anti-

Piracy Campaigns. Communication, Culture, and Critique 2 (3): 274– 318.
2010. The Politics of Platforms. New Media and Society 12 (3): 347– 64.

Gilroy, Paul.
1993. The Black Atlantic: Modernity and Double Consciousness. Cambridge, MA:

Harvard University Press.

Ginsburg, Faye.
2008. Rethinking the Digital Age. In The Media and Social Theory, ed. David Hes-

mondhalgh and Jason Toynbee, 127– 44. London: Routledge.

Gitelman, Lisa.
2006. Always Already New: Media, History, and the Data of Culture. Cambridge,

MA: MIT Press.

Gladwell, Malcolm.
2010. Small Change: Why the Revolution Will Not Be Tweeted. New Yorker,

October 4. http://www.newyorker.com/reporting/2010/10/04/101004fa_fact
_gladwell (accessed August 25, 2011).

Gleick, James.
2000. Patently Absurd. New York Times Sunday Magazine. http://www.nytimes

.com/2000/03/12/magazine/patently-absurd.html (accessed March 24, 2012).

Gluckman, Max.
1963. Order and Rebellion in Tribal Africa: Collected Essays. New York: Macmil-

lan.

Goffman, Erving.
1967. Interaction Ritual: Essays in Face- to- face Behavior. New York: Anchor

Books.

Good, Byron J.
1994. Medicine, Rationality, and Experience: An Anthropological Perspective.

Cambridge: Cambridge University Press.

Goriunova, Olga and Shulgin, Alexei.
2008. Glitch. In Software Studies: A Lexicon, ed. Matthew Fuller, 110– 19. Cam-

bridge, MA: MIT Press.

Graeber, David.
1997. Manners, Deference, and Private Property in Early Modern Europe. Com-

parative Studies in Society and History 39 (4): 694– 728.

2 3 4 R E F E R E N C E S

2001. Toward an Anthropological Theory of Value: The False Coin of Our Own
Dreams. New York: Palgrave.

2004. Fragments of an Anarchist Anthropology. Chicago: Prickly Paradigm Press.
2007. Possibilities: Essays on Hierarchy, Rebellion, and Desire. Oakland, CA: AK

Press.

Gramsci, Antonio.
1971. The Modern Prince. In Selections from the Prison Notebooks, ed. Quintin

Hoare and Nowell Smith, 313– 41. London: Lawrence and Wishart.

Greene, Thomas C.
2001. Ballmer: Linux Is a Cancer. Register, June 2. http://www.theregister.co.uk/

2001/06/02/ballmer_linux_is_a_cancer/ (accessed November 8, 2011).

Grossman, Lev.
2006. You— Yes, You— Are Time’s Person of the Year. Time, December 25. http://

www.time.com/time/magazine/article/0,9171,1570810,00.html (accessed
August 25, 2011).

Gupta, Akhil, and James Ferguson.
1997. Discipline and Practice: The “Field” as Site, Method, and Location in An-

thropology. In Anthropological Locations: Boundaries and Grounds of a
Field Science, ed. Akhil Gupta and James Ferguson, 1– 46. Berkeley: Univer-
sity of California Press.

Gusterson, Hugh.
1998. Nuclear Rites: A Weapons Laboratory at the End of the Cold War. Berkeley:

University of California Press.

Habermas, Jürgen.
1981. The Theory of Communicative Action: Reason and the Rationalization of

Society. London: Beacon Press.
1987. The Philosophical Discourse of Modernity. Cambridge, MA: MIT Press.
1989. The Structural Transformation of the Public Sphere: An Inquiry into a Cat-

egory of Bourgeois Society. Cambridge, MA: MIT Press.

Hadley, Elaine.
2010. Living Liberalism: Practical Citizenship in Mid- Victorian Britain. Chicago:

University of Chicago Press.

Hakken, David.
1999. Cyborgs@Cyberspace? An Ethnographer Looks at the Future. London:

Routledge.

Hall, Jon “maddog.”
2000. My Life and Free Software. Linux Journal (June), 114– 18. http://www.linux

journal.com/article/4047 (accessed July 14, 2011).

Hall, Stuart.
1986. Variants of Liberalism. In Politics and Ideology: A Reader, ed. James Donald

and Stuart Hall, 34– 69. Milton Keynes, UK: Open University Press.

R E F E R E N C E S 2 3 5

Halliday, Richard J.
1976. John Stuart Mill. London: Routledge.

Haraway, Donna J.
1997. Modest_Witness@Second_Millennium.FemaleMan©_Meets_OncoMouse™.

New York: Routledge.

Hardt, Michael, and Antonio Negri.
2000. Empire. Cambridge, MA: Harvard University Press.
2004. Multitude: War and Democracy in the Age of Empire. New York: Penguin.
2009. Commonwealth. Cambridge, MA: Harvard University Press.

Harvey, David.
2005. A Brief History of Neoliberalism. Oxford: Oxford University Press.

Haydn, Cori.
2003. When Nature Goes Public. Princeton, NJ: Princeton University Press.

Hebdige, Dick.
1979. Subculture: The Meaning of Style. London: Methuen.

Heidegger, Martin.
(1927) 2008. Being and Time. New York: HarperCollins.

Helmreich, Stefan.
1998. Silicon Second Nature: Culturing Arti! cial Life in a Digital World. Berkeley:

University of California Press.

Henderson, Scott.
2007. The Dark Visitor: Inside the World of Chinese Hackers. http://onlinebooks

.library.upenn.edu/webbin/book/lookupid?key=olbp49128 (accessed Febru-
ary 15, 2012).

Hesse, Carla.
2002. The Rise of Intellectual Property, 700 B.C.– A.D. 2000: An Idea in the Bal-

ance. Daedalus 131 (Spring): 26– 45.

Hill, Benjamin Mako.
2005. Freedom’s Advanced Standard. Mute: Culture and Politics after the Net,

November 23. http://www.metamute.org/en/Freedoms-Standard-Advanced
(accessed November 3, 2011).

Himanen, Pekka.
2001. The Hacker Ethic and the Spirit of the Information Age. New York: Random

House.

Hindman, Matthew.
2008. The Myth of Digital Democracy. Princeton, NJ: Princeton University Press.

Hoffman, Paul.
2011. The Tao of IETF: A Novice’s Guide to the Internet Engineering Task Force.
http://www.ietf.org/tao.html (accessed July 27, 2011).

2 3 6 R E F E R E N C E S

Hogle, Linda F.
2005. Enhancement Technologies and the Body. Annual Review of Anthropology

34:695– 716.

Hunter, Dan.
2005. Culture War. Texas Law Review 83 (4): 1106– 136.

Jackson, Michael.
1996. Introduction: Phenomenology, Radical Empiricism, and Anthropological Cri-

tique. In Things as They Are: New Directions in Phenomenological Anthro-
pology, ed. Michael Jackson, 1– 50. Bloomington: Indiana University Press.

Jaffe, Adam.
1999. The U.S. Patent System In Transition: Policy Innovation and the Innovation

Process. National Bureau of Economic Research Working Paper 7280. http://
www.nber.org/papers/w7280 (accessed July 19, 2011).

Jaffe, Adam, and Joshua Lerner.
2004. Innovation and Its Discontents: How Our Broken Patent System Is Endan-

gering Innovation and Progress, and What to Do about It. Princeton, NJ:
Princeton University Press.

Johns, Adrian.
1998. The Nature of the Book: Print and Knowledge in the Making. Chicago:

University of Chicago Press.
2006. Intellectual Property and the Nature of Science. Cultural Studies 20 (2– 3):

145– 64.
2010. Piracy: The Intellectual Property Wars from Gutenberg to Gates. Chicago:

University of Chicago Press.

Jones, Caroline A., and Peter Galison, eds.
1998. Picturing Science, Producing Art. New York: Routledge.

Jones, Graham.
2011. Trade of the Tricks: Inside the Magician’s Craft. Berkeley: University of

California Press.

Jordan, Tim.
2008. Hacking: Digital Media and Technological Determinism. Cambridge, UK:

Polity Press.

Joyce, Patrick.
2003. The Rule of Freedom: Liberalism and the Modern City. New York: Verso.

Juris, Jeffrey S.
2008. Networking Futures: The Movements against Corporate Globalization. Dur-

ham, NC: Duke University Press.

Karanovic, Jelena.
2010. Contentious Europeanization: The Paradox of Becoming European through

Anti- Patent Activism. Ethnos: Journal of Anthropology 75 (3): 252– 74.

R E F E R E N C E S 2 3 7

Kawamoto, Dawn.
1998. Netscape Earnings Take a Big Hit. C- Net, January 27. http://news.cnet.com/

Netscape-earnings-take-big-hit/2100-1001_3-207526.html (accessed Novem-
ber 3, 2011).

Keane, Webb.
2009. Freedom and Blasphemy: On Indonesian Press Bans and Danish Cartoons.

Public Culture 21 (1): 47– 76.

Kellner, Douglas.
2003. Media Spectacle. London: Routledge.

Kelty, Christopher M.
2004. Punt to Culture. Anthropological Quarterly 77 (3): 547– 58.
2005. Geeks, Social Imaginaries, and Recursive Publics. Cultural Anthropology 20

(2): 185– 214.
2008. Two Bits: The Cultural Signi! cance of Free Software. Durham, NC: Duke

University Press.

Kenigsberg, Amos.
2001. Peace, Love, and Marketing. Mother Jones, July 20. http://motherjones.com/

politics/2001/07/peace-love-and-marketing (accessed August 24, 2011).

Kidder, Tracy.
1981. The Soul of a New Machine. Boston: Little, Brown and Company.

Klein, Naomi.
2008. The Shock Doctrine: The Rise of Disaster Capitalism. New York: Henry

Holt and Company.

Kollock, Peter.
1999. The Economies of Online Cooperation: Gifts and Public Goods. In Commu-

nities in Cyberspace, ed. Marc A. Smith and Peter Kollock, 219– 39. London:
Routledge.

Knuth, Donald.
1998. The Art of Computer Programming, Vol. 1. New York: Addison- Wesley.

Lakoff, George.
2004. Don’t Think of an Elephant! Know Your Values and Frame the Debate.

White River Junction, VT: Chelsea Green.
2006. Whose Freedom? The Battle over America’s Most Important Idea. New

York: Farrar, Straus, Giroux.

Lancashire, David.
2001. Code, Culture, and Cash: The Fading Altruism of Open Source Develop-

ment. First Monday, October 3. http://" rstmonday.org/htbin/cgiwrap/bin/ojs/
index.php/fm/rt/printerFriendly/1488/1403 (accessed July 18, 2011).

Lanier, Jaron.
2010. You Are Not a Gadget: A Manifesto. New York: Alfred A. Knopf.

2 3 8 R E F E R E N C E S

Latour, Bruno.
1987. Science in Action: How to Follow Scientists and Engineers through Society.

Cambridge, MA: Harvard University Press.
1993. The Pasteurization of France. Cambridge, MA: Harvard University of Press.

Latour, Bruno, and Steve Wooglar.
1979. Laboratory Life: The Social Construction of Scienti! c Facts. Beverly Hills:

Sage Publications.

Lea, Graham.
1999. US versus Microsoft: The Twelfth Week. http://news.bbc.co.uk/2/hi/special

_report/1998/04/98/microsoft/262488.stm (accessed March 23, 2012).

Leonard, Andrew.
1998. The Saint of Free Software. Salon.com. http://archive.salon.com/21st/feature/

1998/08/cov_31feature.html (accessed July 17, 2011).

Lerner, Josh, and Mark Schankerman.
2010. The Comingled Code: Open Source and Economic Development. Cam-

bridge, MA: MIT Press.

Lerner, Josh, and Jean Tirole.
2001. The Open Source Movement: Key Research Questions. European Economic

Review 45 (4– 6): 819– 26.

Lessig, Lawrence.
1999. Code and Other Laws of Cyberspace. New York: Basic Books.
2001a. The Future of Ideas: The Fate of the Commons in a Connected World. New

York: Random House.
2001b. Jail Time in the Digital Age. New York Times, July 30. http://www.nytimes

.com/2001/07/30/opinion/jail-time-in-the-digital-age.html (accessed July 17,
2011).

Levy, Steven.
1984. Hackers: Heroes of the Computer Revolution. New York: Dell.
2002. Lawrence Lessig’s Supreme Showdown. Wired. http://www.wired.com/wired/

archive/10.10/lessig_pr.html (accessed August 25, 2011).
2011. In the Plex: How Google Thinks, Works, and Shapes Our Lives. New York:

Simon and Schuster.

Linebaugh, Peter.
2010. Meandering on the Semantical- Historical Paths of Communism and the

Commons. Commoner. http://www.commoner.org.uk/wp-content/uploads/
2010/12/meandering-linebaugh.pdf (accessed August 25, 2011).

Litman, Jessica.
2001. Digital Copyright: Protecting Intellectual Property on the Internet. Amherst,

NY: Prometheus Books.

Lovink, Geert.
2005. The Principles of Notworking: Concepts in Critical Internet Culture. Am-

sterdam: HvA Publicates.

R E F E R E N C E S 2 3 9

2007. Zero Comments: Blogging and Critical Internet Culture. Oxford: Routledge.

Luhrmann, Tanya M.
2001. Of Two Minds: The Growing Disorder in American Psychiatry. New York:

Alfred A. Knopf.

Macpherson, C. B.
1962. The Political Theory of Possessive Individualism: Hobbes to Locke. Oxford:

Oxford University Press.

Mahmood, Saba.
2005. Politics of Piety: The Islamic Revival and the Feminist Subject. Princeton, NJ:

Princeton University Press.

Malaby, Thomas.
2007. Beyond Play: A New Approach to Games. Games and Culture 2 (2): 95– 113.
2009. Making Virtual Worlds: Linden Lab and Second Life. Ithaca, NY: Cornell

University Press.

Marcus, George E., and Michael Fischer.
1986. Anthropology as Cultural Critique: An Experimental Moment in the Human

Sciences. Chicago: University of Chicago Press.

Marcuse, Herbert.
1965. Repressive Tolerance. In A Critique of Pure Tolerance, ed. Robert Paul Wolff,

Barrington Moore, and Herbert Marcuse, 95– 118. Boston: Beacon Press.

Marshall, Patrick.
1993. Software Piracy: Can the Government Help Stop the Drain on Pro" ts? CQ

Researcher 3 (May 21): 19.

Martin, Randy.
1998. Critical Moves: Dance Studies in Theory and Practice. Durham, NC: Duke

University Press.

Marwick, Alice.
2010. Status Update: Celebrity, Publicity, and Self- Branding in Web 2.0. PhD diss.,

New York University.

Marx, Karl, and Friedrich Engels.
1978. The Marx- Engels Reader. Edited by Robert C. Tucker. New York: W. W. Nor-

ton and Company.

Mauss, Marcel.
1954. The Gift. London: Cohen and West.

McGill, Meredith L.
2002. American Literature and the Culture of Reprinting, 1834– 1853. Philadel-

phia: University of Pennsylvania Press.

McGowan, David.
2001. The Legal Implications of Open Source Software. University of Illinois Law

Review 1:241– 304.

2 4 0 R E F E R E N C E S

McLeod, Kembrew.
2007. Freedom of Expression®: Resistance and Repression in the Age of Intellec-

tual Property. Minneapolis: University of Minnesota Press.

Merleau- Ponty, Maurice.
1962. Phenomenology of Perception. London: Routledge and Kegan Paul.

Mezey, Naomi.
2001. Law as Culture. Yale Journal of Law and the Humanities 13:35– 67.

Milberry, Kate.
2009. Geeks and Global Justice: Another (Cyber)World Is Possible. PhD diss.,

Simon Fraser University.

Mill, John Stuart.
(1857) 1991. On Liberty. Edited by H.B. Acton. London: Dent.

Miller, Daniel, and Don Slater.
2000. The Internet: An Ethnographic Approach. London: Berg.

Mitnick, Kevin D.
2011. Ghost in the Wires: My Adventures as the World’s Most Wanted Hacker.

New York: Little, Brown and Company.

Monfort, Nick.
2008. Obfuscated Code. In Software Studies: A Lexicon, ed. Matthew Fuller, 193–

99. Cambridge, MA: MIT Press.

Moody, Glyn.
1997 The Greatest OS that (N)ever Was. Wired August. Available at http://www

.wired.com/wired/archive/5.08/linux.html, accessed July 20, 2011.
2001. Rebel Code: The Inside Story of Linux and the Open Source Revolution.

Cambridge, MA: Perseus Publishing.

Morozov, Evgeny.
2011. The Net Delusion: The Dark Side of Internet Freedom. New York: Public

Affairs.

Mowery, David C.
1999. The Computer Software Industry. In Sources of Industrial Leadership: Stud-

ies of Seven Industries, ed. David C. Mowery and Richard R. Nelson, 133–
68. Cambridge: Cambridge University Press.

Mulkay, Michael.
1988. On Humor: Its Nature and Its Place in Modern Society. Boston: Blackwell.

Murillo, Luis Felipe Rosado.
2009. Technologia, Política e Cultura Na Comunidade Brasileira de Software Livre

e de Código Aberto. PhD diss., Universidade Federal do Rio Grande do Sul.

Nelson, Ted.
1974. Computer Lib/Dream Machines. Self- published.

Netanel, Neil Weinstock.
2008. Copyright’s Paradox. Oxford: Oxford University Press.

R E F E R E N C E S 2 4 1

Nielsen, Greg.
1998. The Norms of Answerability: Bakhtin and the Fourth Postulate. In Bakhtin

and the Human Sciences, ed. Michael Bell and Michael Gardiner, 214– 30.
London: Sage.

Nissenbaum, Helen.
2004. Hackers and the Contested Ontology of Cyberspace. New Media and Society

6 (2): 195– 217.
2009. Privacy in Context: Technology, Policy, and the Integrity of Social Life. Stan-

ford, CA: Stanford University Press.

Nimmer, Melville B.
1970. Does Copyright Abridge the First Amendment Guarantees of Free Speech

and Press? UCLA Law Review 17:1180– 1204.

Nussbaum, Martha C.
2004. Mill between Aristotle and Bentham. Daedalus 133 (2): 60– 68.

O’Mahony, Siobhán, and Fabrizio Ferraro.
2007. The Emergence of Governance in an Open Source Community. Academy of

Management Journal 50 (5): 1079– 106.

O’Neil, Mathieu.
2009. Cyberchiefs: Autonomy and Authority in Online Tribes. London: Pluto Press.

Ong, Aihwa.
1987. Spirits of Resistance and Capitalist Discipline: Factory Women in Malaysia.

Albany: State University of New York Press.
2006. Neoliberalism as Exception: Mutations in Citizenship and Sovereignty. Dur-

ham, NC: Duke University Press.

Orr, Julian E.
1996. Talking about Machines: An Ethnography of a Modern Job. Ithaca, NY:

Cornell University Press.

Passavant, Paul A.
2002. No Escape: Freedom of Speech and the Paradox of Rights. New York: New

York University Press.

Patterson, Lyman Ray.
1968. Copyright in Historical Perspective. Nashville: Vanderbilt University Press.

Penenberg, Adam L.
2005. Red Herring: Don’t Listen to Bill Gates. The Open- Source Movement Isn’t

Communism. Slate, November 22. http://www.slate.com/id/2130798/ (ac-
cessed August 24, 2011).

Peters, John Durham.
2005. Courting the Abyss: Free Speech and the Liberal Tradition. Chicago: Univer-

sity of Chicago Press.

Pfaffenberger, Bryan.
1996. “If I Want It, It’s OK”: Usenet and the (Outer) Limits of Free Speech. Infor-

mation Society 12:365– 88.

2 4 2 R E F E R E N C E S

Philips, Chuck.
2000. Piracy: Music Giants Miss a Beat on the Web. Los Angeles Times, July 17.

http://articles.latimes.com/2000/jul/17/news/mn-54359 (accessed August 10,
2011).

Pickard, Victor.
2006. United yet Autonomous: Indymedia and the Struggle to Sustain a Radical

Democratic Network. Media, Culture, and Society 28 (3): 315– 36.
2011. The Battle over the FCC Blue Book: Determining the Role of Broadcast

Media in a Democratic Society, 1945– 1948. Media, Culture, and Society 33
(2): 171– 91.

Plato.
n.d. The Republic. Translated by Benjamin Jowett. http://classics.mit.edu/Plato/

republic.html (accessed November 2, 2011).

Polanyi, Michael.
1966. The Tacit Dimension. New York: Doubleday.

Postigo, Hector.
2010. Information Communication Technologies and Framing for Back" re in the

Digital Rights Movement: The Case of Dmitry Sklyarov’s Advanced e- Book
Processor. Social Science Computer Review 28 (2): 232– 50.

Postman, Neil.
(1985) 2006. Amusing Ourselves to Death: Public Discourse in the Age of Show

Business. New York: Penguin.

Povinelli, Elizabeth A.
2002. The Cunning of Recognition: Indigenous Alterities and the Making of Aus-

tralian Multiculturalism. Durham, NC: Duke University Press.
2006. The Empire of Love: Toward a Theory of Intimacy, Genealogy, and Carnal-

ity. Durham, NC: Duke University Press.

Prakash, Gyan.
1999. Another Reason: Science and the Imagination of Modern India. Princeton,

NJ: Princeton University Press.

Rabinow, Paul.
1996. Making PCR: A Story of Biotechnology. Chicago: University of Chicago

Press.

Radcliffe- Brown, A. R.
1952. Structure and Function in Primitive Society. New York: Free Press.

Ratto, Matt.
2005. Embedded Technical Expression: Code and the Leveraging of Functionality.

Information Society 21 (3): 205– 13.

Raymond, Eric S.
1999. The Cathedral and the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. Sebastopol, CA: O’Reilly.

R E F E R E N C E S 2 4 3

Reagle, Joseph Michael.
2010. Good Faith Collaboration: The Culture of Wikipedia. Cambridge, MA: MIT

Press.

Rheingold, Howard.
1993. The Virtual Community: Homesteading on the Electronic Frontier. New

York: Harper Perennial.

Ricoeur, Paul.
1996. Re2 ections on a New Ethos for Europe. In Paul Ricoeur: The Hermeneutics

of Action, ed. Richard Kearney, 3– 14. London: Sage.

Riemens, Patrice.
2003. Some Thoughts on the Idea of “Hacker Culture.” Multitudes 8 (2). http://

multitudes.samizdat.net/Some-thoughts-on-the-idea-of.html (accessed Janu-
ary 27, 2009).

Rose, Nick.
1999. Powers of Freedom: Reframing Political Thought. Cambridge: Cambridge

University Press.

Rosenberg, Scott.
2007. Dreaming in Code: Two Dozen Programmers, Three Years, 4,732 Bugs, and

One Quest for Transcendent Software. New York: Three Rivers Press.

Rosenblum, Nancy L.
1987. Another Liberalism: Romanticism and the Reconstruction of Liberal

Thought. Cambridge, MA: Harvard University Press.

Ross, Andrew.
2006. Technology and Below- the- Line Labor in the Copy" ght over Intellectual

Property. American Quarterly 58 (3): 743– 66.

Rossiter, Ned.
2007. Organized Networks: Media Theory, Creative Labour, New Institutions.

Rotterdam: Nai Publishers.

Rule, James B.
2009. Privacy in Peril: How We Are Sacri! cing a Fundamental Right in Exchange

for Security and Convenience. New York: Oxford University Press.

Sahlins, Marshall.
2000. Sentimental Pessimism and Ethnographic Experience, or Why Culture Is

Not a Disappearing Object. In Biographies of Scienti! c Objects, ed. Lorraine
Daston, 158– 202. Chicago: University of Chicago Press.

Said, Edward.
1978. Orientalism. New York: Vintage Books.

Salin, Peter.
1991. Freedom of Speech in Software. http://www.philsalin.com/patents.html (ac-

cessed November 12, 2003).

Salus, Peter.
1994. A Quarter Century of Unix. Reading, MA: Addison- Wesley.

2 4 4 R E F E R E N C E S

Sapir, Edward.
1921. Language: An Introduction to the Study of Speech. New York: Harcourt

Brace.

Schoen, Seth.
2001. How to Decrypt a DVD: In Haiku Form. http://www.cs.cmu.edu/~dst/

DeCSS/Gallery/decss-haiku.txt (accessed October 2, 2008).

Scholz, Trebor.
2008. Market Ideology and the Myth of Web 2.0. First Monday 13 (3). http://

" rstmonday.org/htbin/cgiwrap/bin/ojs/index.php/fm/article/view/2138/1945
(accessed July 27, 2011).

Schoonmaker, Sara.
2009. Software Politics in Brazil: Toward a Political Economy of Digital Inclusion.

Information, Communication, and Society 12 (4): 548– 65.

Schutz, Alfred.
1967. The Phenomenology of the Social World. Evanston, IL: Northwestern Uni-

versity Press.
1970. On Phenomenology and Social Relations. Chicago: University of Chicago

Press.

Schweik, Charles M., and Robert English.
2012. Internet Success: A Study of Open Source Software Commons. Cambridge,

MA: MIT Press.

Scott, James C.
1985. Weapons of the Weak: Everyday Forms of Peasant Resistance. New Haven,

CT: Yale University Press.

Scott, Jason.
2005. BBS: The Documentary. http://www.archive.org/details/BBS.The.Documentary

(accessed July 28, 2011).

Scott, Joan Wallach.
2009. The Politics of the Veil. Princeton, NJ: Princeton University Press.

Sell, Susan.
2003. Private Power, Public Law: The Globalization of Intellectual Property

Rights. Cambridge: Cambridge University Press.

Sennett, Richard.
2008. The Craftsman. New Haven, CT: Yale University Press.

Sewell, William.
2005. Logics of History: Social Theory and Social Transformation. Chicago: Uni-

versity of Chicago Press.

Shapin, Steven.
1994. A Social History of Truth: Civility and Science in Seventeenth- Century Eng-

land. Chicago: University of Chicago Press.

R E F E R E N C E S 2 4 5

Shirky, Clay.
2008. Here Comes Everybody: The Power of Organizing without Organization.

New York: Penguin Press.

Silverstein, Michael.
2004. “Cultural” Concepts and the Language- Culture Nexus. Current Anthropol-

ogy 45 (5): 621– 52.

Söderberg, Johan.
2007. Hacking Capitalism: The Free and Open Source Software Movement. Ox-

ford: Routledge.

Solove, Daniel J.
2010. Understanding Privacy. Cambridge, MA: Harvard University Press.

Soros, George.
1997. The Capitalist Threat. Atlantic Monthly. http://www.theatlantic.com/past/

docs/issues/97feb/capital/capital.htm (accessed March 25, 2012).

Stallman, Richard.
1985. The GNU Manifesto. Dr. Dobb’s Journal of Software Tools 10 (3): 30– 35.

Stallybrass, Peter, and Allon White.
1997. From Carnival to Transgression. In The Subcultures Reader, ed. Ken Gelder

and Sarah Thorton, 293– 301. London: Routledge.

Star, Susan Leigh, and James R. Griesemer.
1998. Institutional Ecology, “Translation,” and Boundary Objects: Amateurs and

Professionals in Berkeley’s Museum of Vertebrate Zoology. In The Science
Studies Reader, ed. Mario Biagioli, 505– 24. New York: Routledge.

Stephenson, Neal.
1999. In the Beginning Was the Command Line. New York: Avon Books.

Sterling, Bruce.
1992. The Hacker Crackdown: Law and Disorder on the Electronic Frontier. New

York: Bantam.

Streeter, Thomas.
2011. The Net Effect: Romanticism, Capitalism, and the Internet. New York: New

York University Press.

Swedin, Eric G., and David L. Ferro.
2005. Computers: The Life Story of a Technology. Westport, CT: Greenwood Press.

Taussig, Michael.
1980. The Devil and Commodity Fetishism in South America. Chapel Hill: Univer-

sity of North Carolina Press.
1987. Shamanism, Colonialism, and the Wild Man: A Study in Terror and Healing.

Chicago: University of Chicago Press.

2 4 6 R E F E R E N C E S

Taylor, Charles.
1992. Sources of the Self: The Making of the Modern Identity. Cambridge, MA:

Harvard University Press.
2004. Modern Social Imaginaries. Durham, NC: Duke University Press.

Taylor, T. L.
2006. Play between Worlds: Exploring Online Game Culture. Cambridge, MA:

MIT Press.

Terranova, Tiziana.
2000. Free Labor: Producing Culture for the Global Economy. Social Text 18 (2):

33– 58.

Thomas, Douglas.
2003. Hacker Culture. Minneapolis: University of Minnesota Press.

Thompson, E. P.
1963. The Making of the English Working Class. New York: Vintage Books.

Tilly, Charles, and Sidney Tarrow.
2006. Contentious Politics. Boulder, CO: Paradigm.

Towns, Anthony.
2002. It’s Huntin’ Season. http://lists.debian.org/debian-devel-announce/2002/01/

msg00014.html (accessed July 28, 2011).

Trouillot, Michel- Rolph.
2003. Global Transformations: Anthropology and the Modern World. New York:

Palgrave Macmillan.

Turkle, Sherry.
1984. The Second Self: Computers and the Human Spirit. New York: Simon and

Schuster.

Turner, Fred.
2006. From Counterculture to Cyberculture: Steward Brand, the Whole Earth Net-

work, and the Rise of Digital Utopianism. Chicago: University of Chicago
Press.

Turner, Victor.
1967. The Forest of Symbols: Aspects of Ndembu Ritual. Ithaca, NY: Cornell

University Press.
1969. The Ritual Process: Structure and Anti- Structure. Chicago: Aldine.
1986. The Anthropology of Performance. New York: PAJ Publication.

Tushnet, Rebecca.
2004. Copy This Essay: How Fair Use Doctrine Harms Free Speech and How

Copying Serves It. Yale Law Journal 114:535– 90.

Ullman, Ellen.
1997. Close to the Machine: Technophilia and Its Discontents. San Francisco: City

Lights.
2003. The Bug. New York: Nan A. Talese.

R E F E R E N C E S 2 4 7

Vaidhyanathan, Siva.
2001. Copyrights and Copywrongs: The Rise of Intellectual Property and How It

Threatens Creativity. New York: New York University Press.
2004. The Anarchist in the Library: How the Clash between Freedom and Control

Is Hacking the Real World and Crashing the System. New York: Basic Books.

Vetter, Greg R.
2004. The Collaborative Integrity of Open- Source Software. Utah Law Review

563– 700.
2007. Open Source Licensing and Scattering Opportunism in Software Standards.

Boston College Law Review 48 (1): 225– 49.

von Hippel, Eric.
2005. Democratizing Innovation. Cambridge, MA: MIT Press.

von Hippel, Eric, and Georg von Krogh.
2003. Open Source Software and the “Private- Collective” Innovation Model: Issues

for Organization Science. Organization Science 14 (8): 208– 23.

Wark, McKenzie.
2004. A Hacker Manifesto. Cambridge, MA: Harvard University Press.

Warner, Michael.
2002. Publics and Counterpublics. New York: Zone Books.

Wayner, Peter.
2000. Free for All: How Linux and the Free Software Movement Undercut the

High- tech Titans. New York: Harper Business.

Weber, Steven.
2004. The Success of Open Source. Cambridge, MA: Harvard University Press.

Weizenbaum, Joseph.
1976. Computer Power and Human Reason: From Judgment to Calculation. San

Francisco: W. H. Freeman.

Wittgenstein, Ludwig.
1953. Philosophical Investigations. Oxford: Blackwell.

Yngvesson, Barbara.
1989. Inventing Law in Local Settings: Rethinking Popular Legal Culture. Yale

Law Journal 98 (8): 1689– 1709.

Yuill, Simon.
2008. Concurrent Versions Systems. In Software Studies: A Lexicon, ed. Matthew

Fuller, 64– 69. Cambridge, MA: MIT Press.

Zandbergen, Dorien.
2010. Silicon Valley New Age: The Co- Constitution of the Digital and the Sacred.

In Religions and Modernity: Relocating the Sacred to the Self and the Digi-
tal, ed. Stef Aupers and Dick Houtman, 161– 85. Leiden: Brill

I N D E X

••

Adobe, 8, 72, 85, 179–181
aesthetics. See hacking: aesthetic

dimensions of
Allen, Paul, 65, 66
Altair, 65, 76
anarchism, 19, 191, 196
Anonymous, 210
anthropology, 4– 6, 205. See also

ethnography; " eldwork
antiglobalization movements, 8, 83,

186, 210
antisec, 19
Apache, 39, 44, 75, 78, 82
Apple, 33, 59, 170, 191
Arendt, Hannah, 76
AT&T, 36, 68. See also Bell

Laboratories
authority, 117, 121, 126– 27, 130, 135–

40, 154– 55; legal vs. meritocratic,
179, 201

authorship, 95, 116– 17

Bakhtin, Mikhail, 48, 57, 104, 157,
190

Barthes, Roland, 13, 117
BASIC, 29, 65
Bayh- Doyle Act, 66
BBDB, 101– 2
Beebe, Barton, 15
Bell Laboratories, 36, 76. See also Unix
Benjamin, Walter, 29, 64, 104
Benkler, Yochai, 62, 63, 82, 83, 85, 123,

197, 203
Bernstein, Daniel J., 169, 182
Bernstein v. U.S. Department of Justice,

169– 70, 171– 72, 182
BIND, 39, 78
Blandy, Jim, 115

BOF (Birds of a Feather) session, 48,
215n25

Boing Boing, 26, 163
Bollier, David, 197, 200, 203
Bourdieu, Pierre, 51, 100
Boyle, James, 10, 62, 66, 82, 89
Brazil, 20, 87, 196, 212n17, 217n25
bug tracking system, 43, 128– 29, 132, 140
Bulletin Board System (BBS), 25, 30– 33,

58, 213n6, 213n7
Bush, George Herbert Walker, 72, 73, 103
Business Software Alliance (BSA), 71,

85– 86, 89
Byte, 28

cabal, 122, 127, 136– 38, 155, 220n12
carnival, 48, 204
Castells, Manuel, 45
Clark, David, 125
Clark, Erinn “helix,” 52
cleverness, in hacking, 7, 16, 17, 36,

93– 95, 100– 101, 140– 45, 116,
173, 176, 218n4

Clifford, James, 4, 20
Clinton, Bill, 73, 84
code: code is law, 27, 199; code is

speech, 8, 161ff., 170, 173; writing
of, as poetry, 13, 92, 94, 97, 175,
176, 178. See also authorship

collaboration, 29, 43– 44, 53, 75– 76,
83, 95, 106– 7, 116– 18, 128– 29,
191, 209

collectivism, 44, 94– 95, 116. See also
individualism

Comaroff, Jean and John, 184, 200, 203
command line, 35, 36. See also Linux;

Unix

2 5 0 I N D E X

Commission on New Technological
Uses of Copyrighted Works
(CONTU), 66– 67, 216n4

commodi" cation, 64– 67, 205
commons, 196– 99, 223n14; digital, 58;

liberal, 187, 196. See also Creative
Commons

conference (con), 26, 27, 28, 45– 48, 89,
103, 179, 215n21; experience of, 28,
47, 52, 57; importance of computers
at, 54; moral economy of, 48,
60; organization of, 50, 215n24;
political economy of, 59, 60; as
ritual underside of modern publics,
59; social metabolism of, 49ff.

contentious politics, 162, 169– 70, 179
copresence, 47, 59
copyleft, 38, 70, 194, 200– 201, 205,

217n11
copyright, 1, 10, 22, 38, 62, 65– 67, 69,

70, 72– 74, 84– 87, 89, 169, 170–
72, 187, 200– 201, 203

copyright industries, 27, 64, 73, 84– 86,
181

copyright infringements, 72, 74, 88, 179
Corley, Eric. See Goldstein, Emmanuel
corporatism, 40– 41, 72, 77– 78, 80, 82,

84, 191– 92
corruptibility, 127, 136, 137, 153– 54
counterpublics, 60
“Count the number of stars in the sky,”

93– 94, 218n1
Cover, Robert, 124, 147– 48
cracker, 16
craft, hacking as, 11, 17, 63, 93ff., 100–

101, 178
craftiness. See craft
Creative Commons, 83, 168, 197– 200,

208, 223n15. See also Lessig,
Lawrence

creativity, 44, 83, 93, 97, 104, 118
Critchley, Simon, 104
cryptographic signatures, 143

Da Mystik Homeboy, 95– 96, 97– 100
Debian, 2, 20, 43, 83, 123ff.; account

manager of (DAM), 141; constitution
of, 2, 134; Debconf, 47, 49– 58;
Debian- legal, 134, 167– 68; developers

in, 57, 124, 125, 128, 136, 141, 143,
148, 158, 162, 167– 68, 187– 88,
192; female representation in, 6, 52,
56, 151; Free Software Guidelines
(DFSG), 83, 124, 128, 130, 132,
133– 34, 146– 47, 153, 162, 165, 168;
Manifesto of, 43, 70, 130– 31; modes
of governance in, 21, 126, 134, 140;
New Maintainer Process (NMP), 124,
141– 45, 148– 49, 150, 157, 164– 65,
221n20; organization of, 52, 124,
127– 29; project leader of, 111, 134–
37, 151, 154, 220n10; Social Contract
of, 2, 83, 124, 128, 130– 34, 144,
146– 77, 158; Technical Committee
of, 139– 40. See also conference;
meritocracy; Murdock, Ian; trust

DeCSS, 85, 161, 170– 77, 181– 82. See
also Schoen, Seth

Deep Hack Mode, 13
defamiliarization, politics of, 203, 205
Defcon, 31, 179
democracy, 63, 64, 195, 210; in Debian

governance, 21, 126, 134, 189. See
also commons; publics

Derrida, Jacques, 200, 201
Dewey, John, 202
Dibbell, Julian, 19, 98
Digital Millennium Copyright Act

(DMCA), 8, 22, 73, 77, 84– 86,
171– 72, 179

Direct Action Network, 193
disavowal, politics of, 15, 159, 187, 189
Donner, Wendy, 119, 136
Douglas, Mary, 100, 104, 105
Dr. Dobb’s Journal, 28, 69

economic incentive theory, 123, 185,
186, 200, 201

Eldred v. Ashcroft, 198
Electronic Frontier Foundation, 6, 17,

163, 172, 199
elitism, 21, 91, 92, 105– 7, 112, 120,

121, 122, 130, 210
Encryption Wars, 69
Epstein, Richard, 198, 223n17
Espe, 95, 96– 99, 100
ethics, 82, 116, 141, 157; and

enculturation, 124, 141, 158; and

I N D E X 2 5 1

punctuated crisis, 124, 125, 149ff.;
moral precepts, of labor, 108, 147,
157. See also hacker ethics

ethnography, 4– 6, 22, 141, 158, 203
eudaemonia, 12, 13
European Commission, 87

face- to- face interaction, 45, 46, 48, 49,
59, 77, 144. See also collaboration;
virtual interaction

Federal Bureau of Investigation (FBI), 8,
85, 179

FidoNet, 30, 31, 213n8
" eldwork, 4– 7, 15, 212n6
First Amendment, 10, 22, 164, 172,

173, 178, 181, 182, 201
Fischer, Michael, 98
Fish, Stanley, 189
Fogel, Karl, 112, 113
Fortun, Kim, 163
F/OSS applications. See Apache; BIND;

Linux; Perl; Python; Sendmail
free and open- source software (F/OSS),

1, 83, 120, 173; as critique of
liberalism, 3, 183, 192; de" nition
of, 1, 3; history of, 64ff., 80, 83,
89; philosophy of, 3, 36, 44, 94,
159, 187; political antagonism of,
191ff.; vs. proprietary software, 1,
10, 40– 41, 69, 75, 147, 162ff., 194;
relation between free and open, 3,
79; as a social movement, 185– 86

free beer vs. free speech, 38, 39, 164
“Freedom of Speech in Software,” 169
Free Software Foundation, 18, 197
free speech, 86, 92, 119, 122, 164, 169,

170, 173, 184, 195, 202. See also
liberalism

free trade, 4, 73
Freeware Summit, 79, 81
FTP master, 135– 39, 151, 167

Gallery of CSS DeScramblers, 174, 176
Gardiner, Michael, 150, 157
Gates, Bill, 65, 66, 80, 122
Geertz, Clifford, 6, 183
General Agreement on Tariffs and Trade

(GATT), 72
General System of Preferences (GSP), 71

Gladwell, Malcolm, 209, 210
GNU General Public License, 1, 38, 70,

197, 201
GNU Manifesto, 18, 30, 38, 69, 71
Goldstein, Emmanuel (aka Eric Corley),

171, 182
Golub, Alex, 16, 18, 58
Google, 78, 95
Graeber, David, 11, 118, 200
Gramsci, Antonio, 64

Habermas, Jürgen, 59, 126, 150
hacker ethics, 4, 15, 17– 19, 25ff.,

123ff., 161
Hacker Jargon File, 16, 40
hackers: community of, 2, 26, 42–

46, 68, 76– 77, 86, 121– 22, 124,
130– 33, 140ff., 207; and cons
(see conference); and critique of
intellectual property, 3, 185ff.;
de" nition of, 3; and leadership, 75–
76, 111, 125– 26, 130, 124– 26, 142,
154; legal consciousness of, 21, 26,
62– 63, 86, 168ff., 182, 221n2; and
legal practices, 162– 70; life history
of, 25ff.; and organization of work,
17, 117, 121, 127ff.; and political
detachment (see disavowal); popular
representations of, 17, 23, 26,
201; self- identity of, 19, 25ff., 30;
transgressive variant of, 16, 26, 171,
213n2; values of (see cleverness;
craft; creativity; humility; humor;
meritocracy). See also Debian

hacking: aesthetic dimensions of, 4,
11– 17, 93– 101, 117– 20, 218n3;
affective dimensions of, 11– 14,
28, 37, 41, 47, 91, 99, 103, 150
(see also Deep Hack Mode); for
corporations, 33, 77, 80, 120, 192;
ethics of (see hacker ethics); genres
of, 18, 19; political disavowal (see
disavowal); use of humor (see
humor). See also poetics of hacking

haiku, 161, 176– 78. See also Schoen,
Seth

Hall, Jon “maddog,” 77
Halloween Documents, 80– 81. See also

Microsoft

2 5 2 I N D E X

Haraway, Donna, 190
Harvey, David, 4, 73
Hebdige, Dick, 117, 203
Heidegger, Martin, 35, 99
Hewlett Packard, 192
“Holy Wars,” 100
Homebrew Computer Club, 65– 66, 73,

80
HOPE (Hackers on Planet Earth), 16,

55, 196
Hopkins, Don, 217n11
humility, 91, 108, 138. See also

hacking: affective dimensions of
humor, 6– 7, 17, 94, 100– 105, 110, 116;

functions of, 104– 5, 116, 137
Hunter, Dan, 86

IBM, 64, 186, 191– 93, 216n8
icon, F/OSS as, 191, 195, 196, 200
Independent Media Centers (IMCs), 83,

193– 95, 222n11
individualism, 116, 120, 202, 210;

expressive vs. possessive, 11, 14,
118, 165; Millian version of, 136;
and tensions with collective labor,
21, 91, 94– 95

Indymedia, 186, 193, 195, 208
infosec, 18
Intellectual Property Committee, 71
intellectual property law, 9, 62– 66,

185ff., 200– 203; de" nition of, 9, 84,
118; expansion of, 84– 86; history
of, 9– 10, 62– 64; and international
treaties, 71, 72, 84; relationship of
to free speech, 9, 10, 183, 200

International Intellectual Property
Alliance (IIPA), 71, 87

Internet, 26, 30, 32– 33, 39, 46, 58, 73,
75, 83, 88, 169, 189, 207

Internet Relay Chat (IRC), 6, 23, 33,
51, 107, 128, 140, 194, 213n9

Jackson, Michael, 27
Jaffe, Adam, 66, 67
jazz poetics. See poetics of hacking
Johansen, Jon Lech, 86, 161, 162, 170–

73, 180, 181. See also DeCSS
joking. See humor
jurisgenesis, 124

Kant, Immanuel, 157, 221n23
KDE, 44, 75, 167
Kelty, Chris, 58, 68, 76, 123, 127, 189,

198, 209
kernel, 43, 46, 74, 75. See also Linux
Kidder, Tracy, 61
Klecker, Joel “Espy,” 53
Knuth, Donald, 169
Kraft, Martin “madduck,” 54

Latour, Bruno, 57, 76, 185, 190, 197, 198
lawsuits, 46, 64, 72, 86, 161, 171– 72,

180– 82
legal education of hackers. See hackers:

legal consciousness of
Lehman, Bruce, 73
Lessig, Lawrence, 26, 41– 42, 82, 83,

168, 180, 181, 190, 197– 200. See
also Creative Commons

Levy, Steven, 19
liberalism, 2, 17, 68, 121, 211n4;

de" nition of, 2– 4; relation of to
F/OSS, 3, 13, 15, 17, 75, 185, 189,
192, 202; history of, 2– 4, 211n2;
and notions of selfhood, 11, 94,
95, 118, 121, 202; principles of,
2, 3, 9, 17, 189, 195. See also free
speech; hacker ethics

licenses. See copyleft; copyright;
Creative Commons; Debian: Free
Software Guidelines; GNU General
Public License

lifeworld, 27– 29, 31, 45, 47ff., 57– 60,
105, 183

Linux, 21, 33– 36, 38, 43, 76, 78, 80–
82, 127, 191– 93, 214n10; Linux
Journal, 77; Linux kernel project,
43, 46, 74– 75, 103, 129 (see also
Torvalds, Linus); Linux User
Groups, 77, 78; Linux Weekly
News, 41, 48, 78, 173; Linux World,
8, 78, 180. See also Red Hat; Unix

Lisp Machine Incorporated, 68
Litman, Jessica, 62, 67
luser, 110, 219n14

Malaby, Thomas, 126, 211n2, 212– 13n18
Marble, Tom, 54
Marcuse, George, 189, 195

I N D E X 2 5 3

Mark IV, 64
Marx, Karl, 15, 201
May" rst, 18, 188
meritocracy, as ideal, 106, 120– 22;

as ideology, 17, 94, 121, 136; as
practice, 3, 21, 94, 126– 27, 130,
138, 154. See also authority;
Debian: New Maintainer Process

Merleau- Ponty, Maurice, 27
Microsoft, 72, 80– 81, 189
Mill, John Stuart, 14, 119, 136, 199, 202
MIT arti" cial intelligence lab, 67– 68,

69. See also Stallman, Richard
Mitnick, Kevin, 16, 18
MITS. See Altair
Moglen, Eben, 185
Motion Picture Association of America

(MPAA), 71, 85, 171, 174
Multics, 36– 37
Murdock, Ian, 43, 52, 129– 30
Mutt, 102

Nelson, Ted, 218n8
neoliberalism, 4, 11, 66, 73, 89, 192–

93, 196, 199
Netscape, 78– 79, 81, 132
New Maintainer Process (NMP), as

a form of legal education. See
Debian: New Maintainer Process

New York Times, 77, 203, 204
Nibble, 28
nomos, 124, 147, 149, 158
nondisclosure agreements, 41, 69, 192
Non- Maintainer Upload (NMU), 128–

29, 220n6
Novell, 72
Nusinow, David, 54
Nussbaum, Martha, 12. See also

eudaemonia

open source. See F/OSS
Oracle, 33, 72, 81
O’Reilly, Tim, 78, 207
OS (operating system). See Linux; Unix;

Windows

Parsons, Richard, 84
participant observation, 6, 212n6. See

also " eldwork

patents, 39, 62, 67, 69, 72– 73, 86– 87,
89, 169, 191, 201, 216n7, 216n8.
See also copyright

Patterson, Ray, 9
Perens, Bruce, 52, 130, 131, 134, 220n7
Perl, 39, 78, 93– 94, 96–9 8, 175– 76,

178. See also poetics of hacking
Perl Monks, 97
Pigdog, 173– 74
piracy, 26, 34, 72, 84– 86, 88, 171, 182.

See also warez
Plato, 154, 155
poetics of hacking, 13, 93– 94, 95, 97,

113, 175– 76. See also haiku
Popular Computing, 28
populism, 44, 92, 105– 8, 116, 126, 134,

141, 183, 210. See also elitism;
individualism; meritocracy

Prakash, Gyan, 190
Prodromou, Evan, 168, 173– 74
productive freedom, 3– 4, 63
programming. See code; hacking:

aesthetic dimensions of; hacking:
affective dimensions of; poetics of
hacking

protests, 22, 86, 159, 161– 62, 170– 83
publics, 44, 59– 60, 188, 198, 204
Python, 44, 95– 97
“Python versus Perl Wars,” 100

Raymond, Eric, 75, 79, 80, 123
Reagan, Ronald, 66
Recording Industry Association of

America (RIAA), 46, 71
red baiting, 189, 204, 223n20
Red Hat, 77, 131, 192
Ricoeur, Paul, 53
Rilke, Rainer Maria, 20
Riseup, 18, 188
ritual, 21, 28, 47– 48, 56, 59; of

initiation in Debian, 148, 157. See
also conference

Rodrigo, Amaya, 52
romanticism: de" nition of, 13– 14; in

relation to hacker pleasure 13, 19;
and John Stuart Mill, 14, 119, 202

Rosenberg, Scott, 11, 41
Rosenblum, Nancy, 4, 14
Ross, Andrew, 63, 189

2 5 4 I N D E X

RTFM (Read the Fucking Manual),
107, 110– 11, 122

Sahlins, Marshall, 17, 203
Salin, Peter, 169, 170
Schoen, Seth, 17, 161– 62, 176– 78, 182
Schuessler, Ean, 53, 130– 31
Schutz, Alfred, 27
selfhood. See liberalism: and notions of

selfhood
semiotics of translation, 150, 190– 93.

See also Latour, Bruno
Sendmail, 39, 78
Sennett, Richard, 11, 101
shareware, 26, 30, 31, 35, 165, 213n2.

See also warez
Shirky, Clay, 63, 83, 208
Silicon Valley, 20, 39, 77– 80, 209,

212n9. See also Adobe; corporatism
Sklyarov, Dmitry, 85– 86, 162, 169,

179– 81
Slackware, 26, 77
Slashdot, 26, 41, 78, 163
socialism, 38, 71, 79, 189, 191, 199
software industry, 64, 66– 67, 72
software packing, 43, 54, 128– 30, 135,

142, 167
Software Publishers Association, 71
Sonny Bono Copyright Term Extension

Act, 84, 86
Soros, George, 106
SourceForge, 93
Space Wars, 19
speech vs. code, 10, 169– 70, 172– 73, 183
Stallman, Richard, 18, 37– 38, 43, 61,

67– 76, 79– 82, 88– 89, 173, 181,
200– 201, 217n9

suit (in Jargon File), 40
Symbolics, 68

Tarrow, Sidney, 162, 169
Taylor, Charles, 14, 44, 59, 120
Thatcher, Margaret, 199
There Is No Cabal (TINC), 127, 136
Thompson, E. P., 63
Tilly, Charles, 162, 169
Time magazine, 207
Tolstoy, Leo, 25, 28

Torvalds, Linus, 43, 74– 75, 78, 130, 193
Touretzky, David, 173– 74, 176
Trade Related Aspects of Intellectual

Property Rights (TRIPS), 72, 217n13
Trouillot, Michel- Rolph, 5
Troup, James, 139
trust, construction of in F/OSS projects,

110, 124– 27, 136– 37, 141– 44,
154– 55, 219n4. See also authority;
corruptibility

Turkle, Sherry, 61, 99, 116
Turner, Victor, 48, 56
2600, 171, 181
typi" cations, 45

Ullman, Ellen, 11, 97, 99, 106
Universal City Studios Inc. v.

Reimerdes, 181, 222n21
Unix, 33– 37, 68, 76, 129– 30, 214n10.

See also Linux
Usenet, 136, 169, 213n7

Vaidhyanathan, Siva, 62, 84, 169
Vancouver Prospectus, 151, 154– 56
virtual interaction, 21, 32, 42, 45– 47,

49– 51, 53, 57, 76, 78, 107. See also
face- to- face interaction

Wall, Larry, 97
warez, 26, 30, 213n2
War Games, 30
Warner, Michael, 44, 59, 60, 179, 190, 204
Web 2.0, 20, 207– 9, 212n9
Welsh, Matt, 13
Wikipedia, 83, 207, 208, 209
Windows, 36, 80, 170
Wired, 77, 78, 80, 204
World Social Forum, 188
World Trade Organization, 21, 72, 193

xkcd, 11, 12, 58

Ya Basta!, 193
Young, Bob, 131

Zapatista National Liberation Army, 193
Zatko, Peiter, 103
Zawinski, Jaime, 101

